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Preface

The present book has its origins in our earlier book Plasma Dynamics published in
1969. Many who used Plasma Dynamics took the trouble to send us comments,
corrections and criticism, much of which we intended to incorporate in a new
edition. In the event our separate preoccupations so delayed this that we came to
the conclusion that we should instead write another book, that might better reflect
changes of emphasis in the subject since the original publication. In writing we had
two aims. The first was to describe topics that have a place in any core curriculum
for plasma physics, regardless of subsequent specialization and to do this in a way
that, while keeping physical understanding firmly in mind, did not compromise on
a proper mathematical framework for developing the subject. At the same time we
felt the need to go a step beyond this and illustrate and extend this basic theory
with examples drawn from topics in fusion and space plasma physics.

In developing the subject we have followed the traditional approach that in our
experience works best, beginning with particle orbit theory. This combines the
relative simplicity of describing the dynamics of a single charged particle, using
concepts familiar from classical electrodynamics, before proceeding to a variety of
magnetohydrodynamic (MHD) models. Some of the intrinsic difficulties in getting
to grips with magnetohydrodynamics stem from the persistent neglect of classical
fluid dynamics in most undergraduate physics curricula. To counter this we have
included in Chapter 3 a brief outline of some basic concepts of fluid dynamics be-
fore characterizing the different MHD regimes. This leads on to a detailed account
of ideal MHD in Chapter 4 followed by a selection of topics illustrating different
aspects of resistive MHD in Chapter 5. Plasmas support a bewildering variety of
waves and instabilities and the next two chapters are given over to classifying the
most important of these. Chapter 6 continues the MHD theme, dealing with waves
which can be described macroscopically. In contrast to normal fluids, plasmas are
characterized by modes which have to be described microscopically, i.e. in terms
of kinetic theory, because only particular particles in the distribution interact with
the modes in question. An introduction to plasma kinetic theory is included in
Chapter 7 along with a full discussion of the basic modes, the physics of which is
governed largely by wave–particle interactions. The development of kinetic theory
is continued in Chapter 8 but with a change of emphasis. Whereas the effect of
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collisions between plasma particles is disregarded in Chapter 7, these move centre
stage in Chapter 8 with an introduction to another key topic, plasma transport
theory.

A thorough grounding in plasma physics is provided by a selection of topics
from the first eight chapters, which make up a core syllabus irrespective of sub-
sequent specialization. The remaining chapters develop the subject and provide
a basis for more specialized courses, although arguably Chapter 9 on plasma ra-
diation is properly part of any core syllabus. This chapter, which discusses the
principal sources of plasma radiation, excepting bound–bound transitions, along
with an outline of radiative transport and the scattering of radiation by laboratory
plasmas, provides an introduction to a topic which underpins a number of key
plasma diagnostics. Chapters 10 and 11 deal in turn and in different ways with
aspects of non-linear plasma physics and with effects in inhomogeneous plasmas.
Both subjects cover such a diversity of topics that we have been limited to a dis-
cussion of a number of examples, chosen to illustrate the methodology and physics
involved. In Chapter 10 we mainly follow a tutorial approach, outlining a variety
of important non-linear effects, whereas in Chapter 11 we describe in greater detail
a few particular examples by way of demonstrating the effects of plasma inhomo-
geneity and physical boundaries. The book ends with a chapter on the classical
theory of plasmas in which we outline the comprehensive mathematical structure
underlying the various models used, highlighting how these relate to one another.

An essential part of getting to grips with any branch of physics is working
through exercises at a variety of levels. Most chapters end with a selection of
exercises ranging from simple quantitative applications of basic results on the one
hand to others requiring numberical solution or reference to original papers.

We are indebted to many who have helped in a variety of ways during the long
period it has taken to complete this work. For their several contributions, com-
ments and criticism we thank Hugh Barr, Alan Cairns, Angela Dyson, Pat Edwin,
Ignazio Fidone, Malcolm Haines, Alan Hood, Gordon Inverarity, David Mont-
gomery, Ricardo Ondarza-Rovira, Sean Oughton, Eric Priest, Bernard Roberts,
Steven Schwartz, Greg Tallents, Alexey Tatarinov and Andrew Wright. We are
indebted to Dr J.M. Holt for permission to reproduce Fig. 9.16. Special thanks are
due to Andrew Mackwood who prepared the figures and to Misha Sanderson who
shared with Andrew the burden of producing much of the LATEX copy. Finally, we
thank Sally Thomas, our editor at CUP, for her ready help and advice in bringing
the book to press.

T.J.M. Boyd, Dedham
J.J. Sanderson, St Andrews
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Introduction

1.1 Introduction

The plasma state is often referred to as the fourth state of matter, an identification
that resonates with the element of fire, which along with earth, water and air made
up the elements of Greek cosmology according to Empedocles.† Fire may indeed
result in a transition from the gaseous to the plasma state, in which a gas may
be fully or, more likely, partially ionized. For the present we identify as plasma
any state of matter that contains enough free charged particles for its dynamics
to be dominated by electromagnetic forces. In practice quite modest degrees of
ionization are sufficient for a gas to exhibit electromagnetic properties. Even at
0.1 per cent ionization a gas already has an electrical conductivity almost half the
maximum possible, which is reached at about 1 per cent ionization.

The outer layers of the Sun and stars in general are made up of matter in an
ionized state and from these regions winds blow through interstellar space con-
tributing, along with stellar radiation, to the ionized state of the interstellar gas.
Thus, much of the matter in the Universe exists in the plasma state. The Earth
and its lower atmosphere is an exception, forming a plasma-free oasis in a plasma
universe. The upper atmosphere on the other hand, stretching into the ionosphere
and beyond to the magnetosphere, is rich in plasma effects.

Solar physics and in a wider sense cosmic electrodynamics make up one of
the roots from which the physics of plasmas has grown; in particular, that part of
the subject known as magnetohydrodynamics – MHD for short – was established
largely through the work of Alfvén. A quite separate root developed from the
physics of gas discharges, with glow discharges used as light sources and arcs
as a means of cutting and welding metals. The word plasma was first used by
Langmuir in 1928 to describe the ionized regions in gas discharges. These origins

† Empedocles, who lived in Sicily in the shadow of Mount Etna in the fifth century BC, was greatly exercised
by fire. He died testing his theory of buoyancy by jumping into the volcano in 433BC.
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2 Introduction

are discernible even today though the emphasis has shifted. Much of the impetus
for the development of plasma physics over the second half of the twentieth century
came from research into controlled thermonuclear fusion on the one hand and
astrophysical and space plasma phenomena on the other.

To a degree these links with ‘big science’ mask more bread-and-butter applica-
tions of plasma physics over a range of technologies. The use of plasmas as sources
for energy-efficient lighting and for metal and waste recycling and their role in
surface engineering through high-speed deposition and etching may seem prosaic
by comparison with fusion and space science but these and other commercial
applications have laid firm foundations for a new plasma technology. That said,
our concern throughout this book will focus in the main on the physics of plasmas
with illustrations drawn where appropriate from fusion and space applications.

1.2 Thermonuclear fusion

While thermonuclear fusion had been earlier indentified as the source of energy
production in stars it was first discussed in detail by Bethe, and independently
von Weizsäcker, in 1938. The chain of reactions proposed by Bethe, known as the
carbon cycle, has the distinctive feature that after a sequence of thermonuclear
burns involving nitrogen and oxygen, carbon is regenerated as an end product
enabling the cycle to begin again. For stars with lower central temperatures the
proton–proton cycle

1H1 + 1H1 → 1D2 + e+ + ν (1.44 MeV)

1D2 + 1H1 → 2He3 + γ (5.49 MeV)

2He3 + 2He3 → 2He4 + 2 1H1 (12.86 MeV)

where e+, ν and γ denote in turn a positron, neutrino and gamma-ray, is more
important and is in fact the dominant reaction chain in lower main sequence stars
(see Salpeter (1952)). Numbers in brackets denote the energy per reaction. In the
first reaction in the cycle, the photon energy released following positron–electron
annihilation (1.18 MeV) is included; the balance (0.26 MeV) carried by the neu-
trino escapes from the star. The third reaction in the cycle is only possible at tem-
peratures above about 107 K but accounts for almost half of the total energy release
of 26.2 MeV. The proton–proton cycle is dominant in the Sun, the transition to the
carbon cycle taking place in stars of slightly higher mass. The energy produced
not only ensures stellar stability against gravitational collapse but is the source of
luminosity and indeed all aspects of the physics of the outer layers of stars.

The reaction that offers the best energetics for controlled thermonuclear fusion
in the laboratory on the other hand is one in which nuclei of deuterium and tritium
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fuse to yield an alpha particle and a neutron:

1D2 + 1T3 → 2He4 + 0n1 (17.6 MeV)

The total energy output �E = 17.6 MeV is distributed between the alpha par-
ticle which has a kinetic energy of about 3.5 MeV and the neutron which carries
the balance of the energy released. The alpha particle is confined by the magnetic
field containing the plasma and used to heat the fuel, whereas the neutron escapes
through the wall of the device and has to be contained by a neutron-absorbing
blanket.

1.2.1 The Lawson criterion

Although the D–T reaction rate peaks at temperatures of the order of 100 keV
it is not necessary for reacting nuclei to be as energetic as this, otherwise con-
trolled thermonuclear fusion would be impracticable. Thanks to quantum tun-
nelling through the Coulomb barrier, the reaction rate for nuclei with energies
of the order of 10 keV is sufficiently large for fusion to occur. A simple and
widely used index of thermonuclear gain is provided by the Lawson criterion.
For equal deuterium and tritium number densities, nD = nT = n, the thermonu-
clear power generated by a D–T reactor per unit volume is Pfus = 1

4 n2〈σv〉�E ,
where 〈σv〉 denotes the reaction rate, σ being the collisional cross-section and v

the relative velocity of colliding particles. For a D–T plasma at a temperature of
10 keV, 〈σv〉 ∼ 1.1 × 10−22 m3 s−1 so that Pfus ∼ 7.7 × 10−35n2 W m−3. About
20% of this output is alpha particle kinetic energy which is available to sustain
the fuel at thermonuclear reaction temperatures, the balance being carried by the
neutrons which escape from the plasma. Thus the power absorbed by the plasma is
Pα = 1

4〈σv〉n2 Eα where Eα = 3.5 MeV. This is the heat added to unit volume of
plasma per unit time as a result of fusion.

We have to consider next the energy lost through radiation, in particular as
bremsstrahlung from electron–ion collisions. We shall find in Chapter 9 that
bremsstrahlung power loss from hot plasmas may be represented as Pb = αn2T 1/2,
where α is a constant and T denotes the plasma temperature. Above some crit-
ical temperature the power absorbed through alpha particle heating outstrips the
bremsstrahlung loss. Other energy losses besides bremsstrahlung have to be taken
into consideration. In particular, heat will be lost to the wall surrounding the plasma
at a rate 3nkBT/τ where τ is the containment time and kB is Boltzmann’s constant.
Balancing power gain against loss we arrive at a relation for nτ . Lawson (1957) in-
troduced an efficiency factor η to allow power available for heating to be expressed
in terms of the total power leaving the plasma. The Lawson criterion for power
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Fig. 1.1. The Lawson criterion for ignition of fusion reactions. Data points correspond to
a range of magnetic and inertial confinement experiments showing a progression towards
the Lawson curve.

gain is then

nτ >
3kBT[

η

4(1−η)〈σv〉�E − αT 1/2
] (1.1)

This condition is represented in Fig. 1.1. Using Lawson’s choice for η = 1/3
(which with hindsight is too optimistic), the power-gain condition reduces to
nτ > 1020 m−3 s. The data points shown in Fig. 1.1 are nτ values from a range
of both magnetically and inertially contained plasmas over a period of about two
decades, showing the advances made in both confinement schemes towards the
Lawson curve.

1.2.2 Plasma containment

Hot plasmas have to be kept from contact with walls so that from the outset mag-
netic fields have been used to contain plasma in controlled thermonuclear fusion
experiments. Early devices such as Z-pinches, while containing and pinching the
plasma radially, suffered serious end losses. Other approaches trapped the plasma
in a magnetic bottle or used a closed toroidal vessel. Of the latter the tokamak,
a contraction of the Russian for toroidal magnetic chamber, has been the most
successful. Its success compared with competing toroidal containment schemes is



1.2 Thermonuclear fusion 5

Poloidal
direction

Toroidal
direction

B

Fig. 1.2. Tokamak cross-section.

attributable in large part to the structure of the magnetic field used. Tokamak fields
are made up of two components, one toroidal, the other poloidal, with the resultant
field winding round the torus as illustrated in Fig. 1.2. The toroidal field produced
by currents in external coils is typically an order of magnitude larger than the
poloidal component and it is this aspect that endows tokamaks with their favourable
stability characteristics. Whereas a plasma in a purely toroidal field drifts towards
the outer wall, this drift may be countered by balancing the outward force with
the magnetic pressure from a poloidal field, produced by currents in the plasma.
Broadly speaking, the poloidal field maintains toroidal stability while the toroidal
field provides radial stability. For a typical tokamak plasma density the Lawson
criterion requires containment times of a few seconds.

Inertial confinement fusion (ICF) offers a distinct alternative to magnetic con-
tainment fusion (MCF). In ICF the plasma, formed by irradiating a target with
high-power laser beams, is compressed to such high densities that the Lawson
criterion can be met for confinement times many orders of magnitude smaller than
those needed for MCF and short enough for the plasma to be confined inertially.
The ideas behind inertial confinement are represented schematically in Fig. 1.3(a)
showing a target, typically a few hundred micrometres in diameter filled with a
D–T mixture, irradiated symmetrically with laser light. The ionization at the target
surface results in electrons streaming away from the surface, dragging ions in
their wake. The back reaction resulting from ion blow-off compresses the target
and the aim of inertial confinement is to achieve compression around 1000 times
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(a) (b)

X-rays

laser

laser

light

light

electrons
ions

Fig. 1.3. Direct drive (a) and indirect drive (hohlraum) (b) irradiation of targets by intense
laser light.

liquid density with minimal heating of the target until the final phase when the
compressed fuel is heated to thermonuclear reaction temperatures. An alternative to
the direct drive approach illustrated in Fig. 1.3(a) is shown in Fig. 1.3(b) in which
the target is surrounded by a hohlraum. Light enters the hohlraum and produces
X-rays which in turn provide target compression and indirect drive implosion.

1.3 Plasmas in space

Thermonuclear burn in stars is the source of plasmas in space. From stellar cores
where thermonuclear fusion takes place, keV photons propagate outwards towards
the surface, undergoing energy degradation through radiation–matter interactions
on the way. In the case of the Sun the surface is a black body radiator with a
temperature of 5800 K. Photons propagate outwards through the radiation zone
across which the temperature drops from about 107 K in the core to around 5 ×
105 K at the boundary with the convection zone. This boundary is marked by a drop
in temperature so steep that radiative transfer becomes unstable and is supplanted
as the dominant mode of energy transport by the onset of convection.

Just above the convection zone lies the photosphere, the visible ‘surface’ of the
Sun, in the sense that photons in the visible spectrum escape from the photosphere.
UV and X-ray surfaces appear at greater heights. Within the photosphere the Sun’s
temperature falls to about 4300 K and then unexpectedly begins to rise, a transition
that marks the boundary between photosphere and chromosphere. At the top of
the chromosphere temperatures reach around 20 000 K and heating then surges
dramatically to give temperatures of more than a million degrees in the corona.

The surface of the Sun is characterized by magnetic structures anchored in the
photosphere. Not all magnetic field lines form closed loops; some do not close
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in the photosphere with the result that plasma flowing along such field lines is
not bound to the Sun. This outward flow of coronal plasma in regions of open
magnetic field constitutes the solar wind. The interaction between this wind and the
Earth’s magnetic field is of great interest in the physics of the Sun–Earth plasma
system. The Earth is surrounded by an enormous magnetic cavity known as the
magnetosphere at which the solar wind is deflected by the geomagnetic field, with
dramatic consequences for each. The outer boundary of the magnetosphere occurs
at about 10RE, where RE denotes the Earth’s radius. The geomagnetic field is swept
into space in the form of a huge cylinder many millions of kilometres in length,
known as the magnetotail. Perhaps the most dramatic effect on the solar wind is
the formation of a shock some 5RE upstream of the magnetopause, known as the
bow shock. We shall discuss a number of these effects later in the book by way of
illustrating basic aspects of the physics of plasmas.

1.4 Plasma characteristics

We now introduce a number of concepts fundamental to the nature of any plasma
whatever its origin. First we need to go a step beyond our statement in Section 1.1
and obtain a more formal identification of the plasma condition. Perhaps the most
notable feature of a plasma is its ability to maintain a state of charge neutrality.
The combination of low electron inertia and strong electrostatic field, which arises
from even the slightest charge imbalance, results in a rapid flow of electrons to
re-establish neutrality.

The first point to note concerns the nature of the electrostatic field. Although at
first sight it might appear that the Coulomb force due to any given particle extends
over the whole volume of the plasma, this is in fact not the case. Debye, in the
context of electrolytic theory, was the first to point out that the field due to any
charge imbalance is shielded so that its influence is effectively restricted to within
a finite range. For example, we may suppose that an additional ion with charge
Ze is introduced at a point P in an otherwise neutral plasma. The effect will
be to attract electrons towards P and repel ions away from P so that the ion is
surrounded by a neutralizing ‘cloud’. Ignoring ion motion and assuming that the
number density of the electron cloud nc is given by the Boltzmann distribution,
nc = ne exp(eφ/kBTe), where Te is the electron temperature, we solve Poisson’s
equation for the electrostatic potential φ(r) in the plasma.

Since φ(r) → 0 as r → ∞, we may expand exp(eφ/kBTe) and with Zni = ne,
Poisson’s equation for large r and spherical symmetry about P becomes

1

r2

d

dr

(
r2 dφ

dr

)
= nee2

ε0kBTe
φ = φ

λ2
D

(1.2)
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say, where ε0 is the vacuum permittivity. Now matching the solution of (1.2), φ ∼
exp(−r/λD)/r , with the potential φ = Ze/4πε0r as r → 0 we see that

φ(r) = Ze

4πε0r
exp(−r/λD) (1.3)

where

λD =
(
ε0kBTe

nee2

)1/2

	 7.43 × 103

(
Te(eV)

ne

)1/2

m (1.4)

is called the Debye shielding length. Beyond a Debye sphere, a sphere of radius
λD, centred at P , the plasma remains effectively neutral. By the same argument
λD is also a measure of the penetration depth of external electrostatic fields, i.e.
of the thickness of the boundary sheath over which charge neutrality may not be
maintained.

The plausibility of the argument used to establish (1.3) requires that a large
number of electrons be present within the Debye sphere, i.e. neλ

3
D 
 1. The inverse

of this number is proportional to the ratio of potential energy to kinetic energy in
the plasma and may be expressed as

g = e2

ε0kBTeλD
= 1

neλ
3
D

� 1 (1.5)

Since g plays a key role in the development of formal plasma theory it is known as
the plasma parameter. Broadly speaking, the more particles there are in the Debye
sphere the less likely it is that there will be a significant resultant force on any
given particle due to ‘collisions’. It is, therefore, a measure of the dominance of
collective interactions over collisions.

The most fundamental of these collective interactions are the plasma oscillations
set up in response to a charge imbalance. The strong electrostatic fields which
drive the electrons to re-establish neutrality cause oscillations about the equilib-
rium position at a characteristic frequency, the plasma frequency ωp. Since the
imbalance occurs over a distance λD and the electron thermal speed Ve is typically
(kBTe/me)

1/2 we may express the electron plasma frequency ωpe by

ωpe = (kBTe/me)
1/2

λD
=
(

nee2

meε0

)1/2

(1.6)
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which reduces to ωpe 	 56.4n1/2
e s−1. Note that any applied fields with frequen-

cies less than the electron plasma frequency are prevented from penetrating the
plasma by the more rapid electron response which neutralizes the field. Thus a
plasma is not transparent to electromagnetic radiation of frequency ω < ωpe. The
corresponding frequency for ions, the ion plasma frequency ωpi, is defined by

ωpi =
(

ni(Ze)2

m iε0

)1/2

	 1.32Z
(ni

A

)1/2
(1.7)

where Z denotes the charge state and A the atomic number.

1.4.1 Collisions and the plasma parameter

We have seen that the effective range of an electric field, and hence of a collision,
is the Debye length λD. Thus any particle interacts at any instant with the large
number of particles in its Debye sphere. Plasma collisions are therefore many-body
interactions and since g � 1 collisions are predominantly weak, in sharp contrast
with the strong, binary collisions that characterize a neutral gas. In gas kinetics
a collision frequency νc is defined by νc = nVthσ(π/2) where σ(π/2) denotes
the cross-section for scattering through π/2 and Vth is a thermal velocity. Such a
deflection in a plasma would occur for particles 1 and 2 interacting over a distance
b0 for which e1e2/4πε0b0 ∼ kBT so that νc = (nVthπb2

0). However, the cumulative
effect of the much more frequent weak interactions acts to increase this by a factor
∼ 8 ln(λD/b0) ≈ 8 ln(4πnλ3

D). For electron collisions with ions of charge Ze it
follows that the electron–ion collision time τei ≡ ν−1

ei is given by

τei = 2πε2
0m1/2

e (kBTe)
3/2

Z2nie4 ln
(1.8)

where ln = ln 4πnλ3
D is known as the Coulomb logarithm. For singly charged

ions the electron–ion collision time is

τei = 3.44 × 1011 T 3/2
e (eV)

ni ln
s

in which we have replaced the factor 2π in (1.8) with the value found from a correct
treatment of plasma transport in Chapter 12. The Coulomb logarithm is

ln = 6.6 − 1

2
ln
( n

1020

)
+ 3

2
ln Te (eV)

The electron mean free path λe = Veτei is

λe = 1.44 × 1017 T 2
e (eV)

ni ln
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Fig. 1.4. Landmarks in the plasma universe.

Table 1.1 lists approximate values of various plasma parameters along with
typical values of the magnetic field associated with each for a range of plasmas
across the plasma universe. These and other representative plasmas are included
in the diagram of parameter space in Fig. 1.4 which includes the parameter lines
λD = 1 µm, 1 cm and nλ3

D = 1 together with the line marking the boundary at
which plasmas become degenerate kBT = εF, where εF denotes the Fermi energy.
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Table 1.1. Approximate values of parameters across the plasma universe.

Plasma n T B ωpe λD nλ3
D νei

(m−3) (keV) (T) (s−1) (m) (Hz)

Interstellar 106 10−5 10−9 6 · 104 0.7 3 · 105 4 · 108

Solar wind (1 AU) 107 10−2 10−8 2 · 105 7 4 · 109 10−4

Ionosphere 1012 10−4 10−5 6 · 107 2 · 10−3 104 104

Solar corona 1012 0.1 10−3 6 · 107 0.07 4 · 108 0.5
Arc discharge 1020 10−3 0.1 6 · 1011 7 · 10−7 40 1010

Tokamak 1020 10 10 6 · 1011 7 · 10−5 3 · 107 4 · 104

ICF 1028 10 — 6 · 1015 7 · 10−9 4 · 103 4 · 1011
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Particle orbit theory

2.1 Introduction

On the face of it, solving an equation of motion to determine the orbit of a single
charged particle in prescribed electric and magnetic fields may not seem like the
best way of going about developing the physics of plasmas. Given the central role
of collective interactions hinted at in Chapter 1 and the subtle interplay of currents
and fields that will be explored in the chapters on MHD that follow, it is at least
worth asking “Why bother with orbit theory?”. One attraction is its relative sim-
plicity. Beyond that, key concepts in orbit theory prove useful throughout plasma
physics, sometimes shedding light on other plasma models.

Before developing particle orbit theory it is as well to be clear about conditions
under which this description might be valid. Intuitively we expect orbit theory to
be useful in describing the motion of high energy particles in low density plas-
mas where particle collisions are infrequent. More specifically, we need to make
sure that the effect of self-consistent fields from neighbouring charges is small
compared with applied fields. Then if we want to solve the equation of motion
analytically the fields in question need to show a degree of symmetry. We shall
find that scaling associated with an applied magnetic field is one reason – indeed
the principal reason – for the success of orbit theory. Particle orbits in a magnetic
field define both a natural length, rL, the particle Larmor radius, and frequency, �,
the cyclotron frequency. For many plasmas these are such that the scale length, L ,
and characteristic time, T , of the physics involved satisfy an ordering rL/L � 1
and 2π/�T � 1. This natural ordering lets us solve the dynamical equations
in inhomogeneous and time-dependent fields by making perturbation expansions
using rL/L and 2π/�T as small parameters. In this way Alfvén showed that one
could filter out the rapid gyro-motion about magnetic field lines and focus on
the dynamics of the centre of this motion, the so-called guiding centre. Alfvén’s
guiding centre model and the concept of adiabatic invariants (quantities that are

12
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not exact constants of the motion but, in certain circumstances, nearly so) play a
key role in orbit theory. In large part, this chapter is taken up with the development
and application of Alfvén’s ideas.

Throughout this chapter we shall assume that radiative effects are negligible. For
the present we suppose that particle energies are such that we need only solve the
non-relativistic Lorentz equation for the motion of a particle of mass m j and charge
e j at a position r j (t) moving in an electric field E and a magnetic field B

m j r̈ j = e j
[
E(r, t)+ ṙ j × B(r, t)

]
(2.1)

under prescribed initial conditions. This needs to be done for particles of each
species. An important part of this procedure requires checking for self-consistency
of the assumed fields. For the most part this means ensuring that fields induced by
the motion of particles are negligible compared with the applied fields. For this we
use Maxwell’s equations

∇ × E = −∂B
∂t

(2.2)

∇ × B = ε0µ0
∂E
∂t

+ µ0j (2.3)

∇ · E = q/ε0 (2.4)

∇ · B = 0 (2.5)

in which j(r, t) and q(r, t) are current and charge densities defined by

j(r, t) =
N∑

j=1

e j ṙ j (t)δ(r − r j (t)) (2.6)

q(r, t) =
N∑

j=1

e jδ(r − r j (t)) (2.7)

where δ denotes the Dirac delta function and sums are taken over all plasma
particles. Checking for self-consistency, though not often stressed, is important
since it may impose limits on the use of orbit theory and, in some cases, necessary
conditions on the plasma or fields which would not otherwise be obvious. In the
following applications of orbit theory we discuss self-consistency only when it
gives rise to such limitations. In general whenever charge distributions or current
densities are significant, orbit theory is no longer adequate and statistical or fluid
descriptions are then essential.
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2.2 Constant homogeneous magnetic field

The simplest problem in orbit theory is that of the non-relativistic motion of a
charged particle in a constant, spatially uniform magnetic field, B, with E = 0.
Moreover, we shall see that it is straightforward to deal with more general cases
as perturbations of this basic motion. For simplicity of notation we discard the
subscript j on e j and m j except where we wish specifically to distinguish between
ions and electrons. Taking the direction of B to define the z-axis, that is B = Bẑ,
the scalar product of (2.1) with ẑ gives,

z̈ = 0 (2.8)

so that ż = v‖ = const. Also from (2.1),

mr̈ · ṙ = 0

so that

1
2 mṙ2 = W = const.

Hence the magnitude of velocity components both perpendicular (v⊥) and parallel
(v‖) to B are constant and the kinetic energy

W = W⊥ + W‖ = 1
2 m(v2

⊥ + v2
‖)

It is no surprise that kinetic energy is conserved since the force is always per-
pendicular to the velocity of the particle and, in consequence, does no work on
it. Moreover, conservation of kinetic energy is not restricted to uniform magnetic
fields.

The particle trajectory is determined by (2.8) together with the x and y compo-
nents of (2.1):

ẍ = �ẏ ÿ = −�ẋ

where � = eB/m. A convenient way of dealing with motion transverse to B starts
by defining ζ = x + iy so that

ζ̈ + i�ζ̇ = 0

Integrating once with respect to time gives

ζ̇ (t) = ζ̇ (0) exp(−i�t)

and by defining ζ̇ (0) = v⊥ exp(−iα) it follows that

ẋ = v⊥ cos(�t + α) ẏ = −v⊥ sin(�t + α) (2.9)
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z0

(x0, y0)
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Fig. 2.1. Orbit of a positively charged particle in a uniform magnetic field.

Integrating a second time determines the particle orbit

x =
(v⊥
�

)
sin(�t + α)+ x0

y =
(v⊥
�

)
cos(�t + α)+ y0


 (2.10)

and

z = v‖t + z0 (2.11)

where α, x0, y0, and z0, together with v⊥ and v‖, are determined by the initial con-
ditions. The quantity φ(t) ≡ (�t + α) is sometimes referred to as the gyro-phase.
The superposition of uniform motion in the direction of the magnetic field on the
circular orbits in the plane normal to B defines a helix of constant pitch with axis
parallel to B as shown in Fig. 2.1 for a positively charged particle. Referred to
the moving plane z = v‖t + z0 the orbit projects as a circle with centre (x0, y0)

and radius rL = v⊥/|�|. The centre of this circle, known as the guiding centre,
describes the locus rg = (x0, y0, v‖t + z0). It is important to emphasize that the
guiding centre is not the locus of a particle as such. The radius of the circle, rL,
is known as the Larmor radius and the frequency of rotation, �, as the Larmor
frequency, cyclotron frequency, or gyro-frequency. The sense of rotation for a
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prescribed magnetic field is determined by � which depends on the sign of the
charge. Viewed from z = +∞, positive and negative particles rotate in clockwise
and anticlockwise directions, respectively. For electrons |�e| = 1.76 × 1011 B s−1,
while for protons �p = 9.58 × 107 B s−1 where B is measured in teslas. In many
applications of orbit theory we need concern ourselves only with guiding centre
motion. However aspects of the Larmor motion are needed for discussion later in
the chapter and we next look briefly at one of these.

2.2.1 Magnetic moment and plasma diamagnetism

We can formally associate a microscopic current IL with the Larmor motion. The
magnetic field from this microcurrent is determined by Ampère’s law and is op-
positely directed to the applied magnetic field. In this sense the response of the
particle to the magnetic field is diamagnetic. In the same formal sense we may
associate with this microcurrent a magnetic moment µB given by

µB = −πr2
L ILB/|B| = −πr2

L

(
e�

2π

)
B
|B|

where 2π/|�| is a Larmor period. From this it follows that

µB = −W⊥
B2

B

If we now extend this argument to all plasma particles we can find an expression for
the magnetization per unit volume by summing individual moments over the distri-
bution of particles. For n particles per unit volume the magnetization M = n〈µB〉
where the brackets denote an average. Then using jM = ∇ × M = µ−1

0 ∇ × Bind,
the magnitude of the induced field Bind relative to the applied magnetic field is

Bind

B
∼ µ0n〈W⊥〉

B2

where 〈W⊥〉 denotes the average kinetic energy perpendicular to B. Since we re-
quire the induced field to be small compared with the applied field this implies that
the kinetic energy of the plasma must be much less than the magnetic energy.

2.3 Constant homogeneous electric and magnetic fields

We now introduce a constant, uniform electric field which may be resolved into
components E‖ in the direction of B and E⊥, which is taken to define the direction
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of the y-axis. Thus B = (0, 0, B), E = (0, E⊥, E‖), and the components of (2.1)
are

ẍ = �ẏ (2.12)

ÿ = eE⊥
m

−�ẋ (2.13)

z̈ = eE‖
m

(2.14)

Integrating (2.14) once gives

ż = v‖ + eE‖t

m

from which it is clear that for sufficiently long times the non-relativistic approxima-
tion breaks down unless E‖ = 0. Further, since charges of opposite sign are accel-
erated in opposite directions, a non-zero E‖ gives rise to arbitrarily large currents
and charge separation. Therefore, from (2.3) and (2.4) significant fluctuating fields
are induced contrary to our assumption of constant fields. Thus for consistency it
is necessary to set E‖ = 0 in this approximation.

Equations (2.12) and (2.13) are solved as in Section 2.2. Now

ζ̈ + i�ζ̇ = ieE

m
(2.15)

where E⊥ has been replaced by E . Integrating once gives

ζ̇ (t) = ζ̇ (0)e−i�t + vE(1 − e−i�t)

where vE = E/B. Hence

ẋ = u cos(�t + α)+ vE ẏ = −u sin(�t + α)

where u and α are constants defined by

ζ̇ (0)− vE = ue−iα

The velocity of the guiding centre is now

vg = (vE, 0, v‖)

Thus the effect of an electric field perpendicular to the magnetic field is to produce
a drift orthogonal to both. This means that the guiding centre is no longer tied to
a particular field line but drifts across field lines. The drift velocity, which may be
written

vE = (E × B)/B2 (2.16)
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B

E

Fig. 2.2. Drift produced by a constant uniform electric field perpendicular to the magnetic
field.

depends only on the fields; in particular, being independent of particle charge it
cannot give rise to a current. The non-relativistic approximation implies a further
restriction on the electric field; by (2.16), E � cB, where c is the speed of light.
The trajectories of positive and negative particles in the plane defined by (2.11),
found from a second integration of (2.15), are shown in Fig. 2.2. In its Larmor
cycle a positive charge slows when moving in opposition to the electric field and
accelerates when moving with it. Thus the Larmor orbit is continuously distorted as
the instantaneous Larmor radius alternately becomes shorter in one half-cycle and
longer in the next as in Fig. 2.2. The net effect is a drift to the right. The electrons
also drift to the right since the opposite action of the field is compensated for by
the anti-clockwise rotation. The mass difference between positively and negatively
charged particles is represented schematically in Fig. 2.2 by the smaller electron
drift per cycle which is fully compensated by the proportionately bigger Larmor
frequency.

2.3.1 Constant non-electromagnetic forces

It may happen that the particles are subject to non-electromagnetic forces such as
gravity. If such a force, F, is constant it is equivalent to an electric field E′ = F/e
and is subject to the same restrictions found for E, i.e. its component parallel to B
must be negligible and F � ceB. The drift velocity is then

vF = (F × B)/eB2

In contrast to vE this drift contributes to a current. There is a nice antithesis here
in that a non-electromagnetic drift produces a current whereas the electromagnetic
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(a)
(b)

Fig. 2.3. Particle motion showing (a) exact and (b) guiding centre trajectories.

drift vE does not. Note that drifts from gravitational forces while usually insignifi-
cant in laboratory plasmas normally need to be taken into account when applying
orbit theory in space plasmas.

2.4 Inhomogeneous magnetic field

In practice the fields we encounter are generally both space- and time-dependent.
Restricting ourselves for the present to spatially inhomogeneous magnetic fields,
B(r), it is necessary to solve (2.1) numerically in general. However, if the inhomo-
geneity is small – that is, the field experienced by the particle in traversing a Larmor
orbit is almost constant – it is possible to determine the trajectory as a perturbation
of the basic motion found in Section 2.2. With B(r) 	 B(r0) + (δr · ∇)B|r=r0 ,
where r0 is the instantaneous position of the guiding centre and δr = r − r0, we
require that δB, the change in B over a distance rL, be such that

|δB| = |(δr · ∇)B| � |B|
i.e. rL � L where L is a distance over which the field changes significantly.

This perturbation approach was first applied systematically by Alfvén. It is
known as the guiding centre approximation and has proved a robust tool in the
application of orbit theory to cases of practical interest. Alfvén recognized that in
many such applications one need not bother with the fast Larmor motion which can
be averaged out to leave the slower guiding centre motion illustrated in Fig. 2.3.

The most general inhomogeneous field represented by the nine components of
[∂Bi/∂x j ] gives rise to distinct kinds of drift from the gradient and curvature terms.
We look at each of these in turn.

2.4.1 Gradient drift

Taking B = (0, 0, B(y)) and E = 0, (2.1) gives

ẍ = �(y)ẏ ÿ = −�(y)ẋ
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so that

ζ̈ = −i�(y)ζ̇ (2.17)

and

z̈ = 0 (2.18)

With the assumption δB � B, � may be expanded about the initial position of the
guiding centre to give

�(y) 	 �(y0)+ (y − y0)
d�

dy

∣∣∣∣
y0

= �0 + (y − y0)�
′
0

Hence

ζ̈ + i�0ζ̇ = −i�′
0(y − y0)ζ̇ (2.19)

The terms on the left are zero-order while that on the right is first-order and, as
such, y and ζ̇ may be replaced by their zero-order (that is, uniform B) values from
(2.9) and (2.10) giving

ζ̈ + i�0ζ̇ = −i�′
0

v2
⊥
�0

cos(�0t + α)e−i(�0t+α)

On integrating once

ζ̇ (t) = ζ̇ (0)e−i�0t − i�′
0v

2
⊥

�2
0

e−i(�0t+α)[sin (�0t + α)− sinα]

Then

ẋ(t) = v⊥ cos (�0t + α)− �′
0v

2
⊥

2�2
0

[1 − cos 2(�0t + α)− 2 sin (�0t + α) sinα]

(2.20)

ẏ(t) = −v⊥ sin (�0t + α)− �′
0v

2
⊥

2�2
0

[sin 2(�0t + α)− 2 cos (�0t + α) sinα]

(2.21)
These solutions satisfy identical initial conditions to the uniform B case. Also,
from (2.18) ż = v‖. From (2.20) and (2.21) we see that oscillations occur at 2�0

in addition to those at �0. In the present context, however, the term of interest
is the non-oscillatory one in (2.20). The average of the velocity over one period
(T = 2π/�0) is

〈v〉 = (−v2
⊥�

′
0/2�2

0, 0, v‖)

Thus a magnetic field in the z direction with a gradient in the y direction gives rise
to a drift in the x direction. This grad B drift velocity may be written

vG = [W⊥(B × ∇)B]/eB3 (2.22)
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B

∆
B

Fig. 2.4. Drift produced by an inhomogeneous magnetic field.

In this case, the drift depends on properties of the particle and, in particular, occurs
in opposite directions for positive and negative charges. However, this of itself does
not imply a flow of current as we shall see in Section 2.5. The physical source of the
∇B drift is clear from Fig. 2.4 which shows the Larmor radius bigger in regions
of weaker B. Thus there will be a drift perpendicular both to B and ∇B but in
this case the opposite rotation of positive and negative charges leads to drifts in
opposite directions.

2.4.2 Curvature drift

In practice magnetic fields not only vary spatially but are generally curved and
the curvature of field lines in turn gives rise to a drift. For example, if B =
(0, By(z), B), where By and dBy/dz are taken as small quantities,† one has

ẍ = �ẏ −�y ż ÿ = −�ẋ z̈ = �y ẋ

where �y = (eBy/m). Hence,

ζ̈ + i�ζ̇ = −�y(z)ż = −�y(z)v‖

neglecting squares of small quantities. It is straightforward to show that there is a
drift in the x-direction given by

vC = 〈ẋ〉 = −v2
‖�

′
y/�

2 = −mv2
‖(dBy/dz)/eB2

This curvature drift velocity may be written more generally

vC = 2W‖(B×(B · ∇)B)/eB4 (2.23)

† It is convenient to keep B for the z component of B. Since |B| does not appear in the remainder of this section
no confusion arises.
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There is also a drift in the y-direction given by (v‖�y/�). This merely keeps the
guiding centre moving parallel to B in the Oyz-plane since, on average,

〈ẏ〉
〈ż〉 = v‖�y/�

v‖
= By

B

To see the physical origin of the curvature drift, picture the particle moving along
a curved field line with velocity v‖. Because of the curvature the particle will feel
a centrifugal force F = mv2

‖Rc/R2
c where Rc is a vector from the local centre of

curvature to the position of the charge. From Section 2.3.1, vF = (F × B)/eB2 and
so

vC = mv2
‖

eB2

Rc × B
R2

c

Since the magnetic field lines are defined by dl × B = 0 so that dy/By = dz/B, it
follows that R−1

c 	 d2 y/dz2 	 B−1 dBy/dz. Hence

vC = −mv2
‖(dBy/dz)/eB2

If the magnetic field is characterized by both gradient and curvature terms in ∇B
and there are no currents present so that ∇ × B = 0, then ∂By/∂z = ∂B/∂y and
the total drift velocity is given by

vB = [(W⊥ + 2W‖)(B × ∇)B]/eB3 (2.24)

Taken together these drifts describe completely the lowest order motion of the
guiding centre across an inhomogeneous time-independent magnetic field. The
drift velocities are O(rL/L) times the particle velocities.

Of the other possible inhomogeneities in the magnetic field, the divergence terms
are considered in Section 2.6.1. However neither these, nor either of the remaining
components of [∂Bi/∂x j ] describing shear, give rise to drift motion.

2.5 Particle drifts and plasma currents

We have already sounded a note of caution about too readily identifying particle
guiding centre drifts with plasma current. A current density properly involves an
average over a distribution of particles, a procedure that makes no direct appeal to
the guiding centre motion of particles. Guiding centre drifts on the other hand are
found from time-averaging the motion of a single particle. There are no grounds
for supposing the two averages are identical and in general they are not.
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Let us form a current density corresponding to the ∇B drift from (2.22) by
summing over ions (i) and electrons (e) and using 〈W⊥〉 to denote average values
of W⊥ (cf. Section 2.2.1). Then

jG = (ni〈W⊥i〉 + ne〈W⊥e〉)B × ∇B/B3

= [n〈W⊥〉(B × ∇B)]/B3 (2.25)

To arrive at the total current density we must remember to include the contribution
from the plasma diamagnetism. In Section 2.2.1 we saw that the magnetization per
unit volume of plasma, M, is given by

M = −n〈W⊥〉
B2

B

from which the magnetization current density is

jM = −∇ ×
(

n〈W⊥〉
B2

B
)

(2.26)

The total current density is then the sum of jG and jM ; for simplicity we suppose
there is no field curvature.

If we now turn to the configuration of Section 2.4.1 with B = (0, 0, B(y)) we
find that part of the magnetization current density cancels the contribution from the
field gradient, so that

jx = (jG + jM) · x̂ = −n〈W⊥〉
B2

dB

dy
− d

dy

[
n〈W⊥〉

B

]
= − 1

B

d

dy
(n〈W⊥〉) (2.27)

The effects of plasma magnetization and guiding centre drift in an inhomogeneous
magnetic field combine to produce a current perpendicular both to the magnetic
field and to the direction in which the field varies, provided n〈W⊥〉 is spatially non-
uniform. If we now substitute (2.27) into (2.3) we find, neglecting displacement
current, [

dB

dy
+ µ0

B

d

dy
(n〈W⊥〉)

]
= 0 (2.28)

so that n〈W⊥〉 + B2/2µ0 = const. Thus we see that our picture is consistent only
if the increasing magnetic field is compensated by a corresponding decrease in
n〈W⊥〉 (or as we shall see in Section 3.4.2, by decreasing pressure). The particular
case of decreasing density is illustrated in Fig. 2.5.

In general if one keeps the displacement current term in Maxwell’s equations
there is then a time-dependent electric field which gives rise to plasma oscillations.
Any appeal to orbit theory in conditions where charge separation is significant is of
doubtful value. However, if the time dependence of the electric field is slow enough
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B
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j

Fig. 2.5. Current density in an inhomogeneous magnetized plasma. In any current sheet
perpendicular to the plane of the figure there are more electrons flowing to the left than to
the right because of the density gradient.

so that plasma oscillations do not occur we may include a time-dependent electric
field as we shall see in Section 2.12.

2.6 Time-varying magnetic field and adiabatic invariance

In Section 2.4 we introduced certain inhomogeneous magnetic fields. In practice,
one often has to deal with fields that are time-dependent. In keeping with Sec-
tion 2.4, which was restricted to weakly inhomogeneous fields, we shall consider
only magnetic fields varying slowly in time (|Ḃ|/|B| � |�|). For simplicity, con-
sider a magnetic field which varies in time but not in space. For particle motion in
such a field, can one find conserved quantities that are counterparts to W⊥, W‖ for
motion in a constant and uniform magnetic field? We shall demonstrate that such
invariants do exist in particular circumstances.

A time-dependent axial magnetic field induces an azimuthal electric field, E, so
that, unlike v‖, v⊥ is no longer constant and taking the scalar product of (2.1) with
v⊥ gives

d

dt

(
1
2 mv2

⊥
) = eE · v⊥

Thus in executing a Larmor orbit the particle energy changes by

δ
(

1
2 mv2

⊥
) =

∮
E · dr⊥ = e

∫
(∇ × E) · dS

where dr⊥ = v⊥ dt and dS is an element of the surface enclosed by the orbital
path. Hence, from (2.2)

δ
(

1
2 mv2

⊥
) = −e

∫
∂B
∂t

· dS
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Since the field changes slowly

δ
(

1
2 mv2

⊥
) 	 πrL

2|e|Ḃ = mv2
⊥

2

2π

|�|
Ḃ

B

Note in passing that the negative sign disappears since for positive (negative)
charges e > 0 (< 0) and B · dS < 0 (> 0). If we denote by δB the change in
magnitude of the magnetic field during one orbit it follows that

δW⊥ = W⊥
δB

B

i.e.

δ(W⊥/B) = 0

From Section 2.2.1 where we identified the magnetic moment of a charged particle
as

µB = W⊥
B

(2.29)

we see from this analysis that µB is an approximate constant of the motion, a
property first recognized by Alfvén.

The magnetic moment is one of a number of entities which are approximate
constants of the motion for particles in magnetic fields. In Hamiltonian dynamics
such quantities are known as adiabatic invariants. In particular the action

∮
p dq,

where p, q are conjugate canonical variables and the integral is taken over a period
of the motion in q , is adiabatically invariant. The condition critical for adiabatic
invariance is that the particle trajectory changes slowly on the time scale of the
basic periodic motion. The number of invariants is determined by the periodicities
that characterize the motion. We have established that the adiabatic invariance of
µB is associated with Larmor precession in a magnetic field. We shall find that
a charged particle may be trapped between magnetic mirror fields, as a result of
which another periodicity appears and with it a second adiabatic invariant. If in
addition we allow for curvature drift then for a suitably configured field a third
invariant may be identified corresponding to the magnetic flux enclosed by the
drift orbit of the guiding centre.

2.6.1 Invariance of the magnetic moment in an inhomogeneous field

The magnetic moment also turns out to be invariant for motion in spatially inho-
mogeneous magnetic fields for which the matrix [∂Bi/∂x j ] has non-zero diagonal
elements, the divergence terms. To demonstrate this, consider the axially symmet-
ric magnetic field increasing slowly with z as in Fig. 2.6. Writing the divergence
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B - field lines

z

Fig. 2.6. Magnetic field increasing in the direction of the field.

property of B in cylindrical polar coordinates and integrating gives

r Br = −
∫ r

0
r
∂Bz

∂z
dr

Since the field is approximately constant over one Larmor orbit and |Br | � Bz

Br (rL) 	 −rL

2

∂Bz

∂z
	 −rL

2

∂B

∂z

With this approximation the z component of (2.1) gives

m
dv‖
dt

= − 1
2 |e|rLv⊥

∂B

∂z
= −W⊥

B

∂B

∂z
= −µB

∂B

∂z

Thus,

d

dt

(
1
2 mv‖2

) = −µBv‖
∂B

∂z
= −µB

dB

dt
(2.30)

From (2.29)

d

dt

(
1
2 mv⊥2

) ≡ d

dt
(µB B) (2.31)

Adding (2.30) and (2.31) and using energy conservation we find

dµB

dt
= 0 (2.32)

The invariance of µB in spatially varying magnetic fields has important implica-
tions which we explore in the next section.

2.7 Magnetic mirrors

Consider a particle moving in the inhomogeneous field introduced in Section 2.6
towards the region of increasing B. It follows from the invariance of W⊥/B that
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B
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B - field lines

Fig. 2.7. Magnetic mirror field.

W⊥ must increase. Since energy is conserved this increase must be at the expense
of W‖. Thus it may happen that for some value of B (BR say) W‖ = 0, in which case
the particle cannot penetrate further into the magnetic field and suffers reflection at
this point (provided (v × B) · ẑ �= 0). Such a field configuration has the properties
of a magnetic mirror.

It is convenient to define the pitch angle, θ , of the particle by

tan θ = v⊥
v‖

(2.33)

Then, from the invariance of µB = W⊥/B, it follows that sin2 θ/B is constant.
Defining the constant by B−1

R we have

sin θ = (B/BR)
1/2 (2.34)

For a particle which penetrates to the point where B reaches its maximum value
BM before being reflected, BR = BM. Hence particles with pitch angles such that
sin θ > (B/BM)

1/2 suffer reflection before reaching the region of maximum field;
those having sin θ ≤ (B/BM)

1/2 are not reflected.
If one arranges two mirror fields in the configuration shown in Fig. 2.7 then

particles with sin θ > (B/BM)
1/2 will be reflected to and fro. This configuration

constitutes a magnetic bottle or adiabatic mirror trap. Taking B0 to be the value of
the magnetic field in the mid-plane of the bottle, the mirror ratio is defined by

R = BM

B0
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θ0

σ

Fig. 2.8. Loss cone for a magnetic mirror. Particles with velocities within the cone will
escape from the mirror.

and particles will be reflected if

sin θ0 > R−1/2

The particles which are lost from the magnetic bottle are those within the solid
angle σ in velocity space shown in Fig. 2.8. This solid angle σ defines the loss
cone. Denoting the probability of loss from the bottle by P where

P = σ

2π
=
∫ θ0

0
sin θ dθ

we have

P = 1 −
(

R − 1

R

)1/2

	 1

2R
if R 
 1

Thus the higher the mirror ratio, the less likely it is that particles will escape.
Mirror traps have been used to contain laboratory plasmas but losses through the

mirrors led to their being abandoned in favour of toroidal devices. However, the
concept of magnetic trapping is fundamental to an understanding of many naturally
occurring plasmas such as the Earth’s radiation belts and the energetic particles
associated with solar flares which move in closed loop fields associated with active
regions of the Sun. Before discussing naturally occurring magnetic traps we first
identify a second adiabatic invariant.

2.8 The longitudinal adiabatic invariant

Given that the number of adiabatic invariants reflects the distinct system period-
icities, we expect a second invariant to arise in connection with the reflection of
particles between the fields of a mirror trap. This invariant is associated with the
guiding centre motion and is known as the longitudinal invariant, J , defined by

J =
∮
v‖ ds (2.35)
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where ds is an element of the guiding centre path and the integral is evaluated
over one complete traverse of the guiding centre. The invariance of J is useful in
situations in which the mirror points are no longer stationary; therefore B is taken
to be slowly varying in both space and time. Since J is a function of ṡ (≡ v‖), s, t ,
using W = 1

2 mv2
‖ + µB B we may write

J (W, s, t) =
∫ s

s1

[
2

m
(W − µB B)

]1/2

ds (2.36)

Then

dJ

dt
=

(
∂ J

∂t

)
W,s

+
(
∂ J

∂W

)
s,t

dW

dt
+
(
∂ J

∂s

)
W,t

ds

dt

= −
∫ s

s1

[
2

m
(W − µB B)

]−1/2 (
µB

m

∂B

∂t

)
ds

+
{
v‖v̇‖ + µB

m

∂B

∂t
+ µB

m
v‖
∂B

∂s

}∫ s

s1

[
2

m
(W − µB B)

]−1/2

ds

+
[

2

m
(W − µB B)

]1/2

v‖ − v‖
∫ s

s1

[
2

m
(W − µB B)

]−1/2 (
µB

m

∂B

∂s

)
ds

Now, at the turning point s = s1, v‖ = 0; then

dJ (W, s1, t)

dt
= −

∮ [
2

m
(W − µB B)

]−1/2 (
µB

m

∂B

∂t

)
ds

+µB

m

∂B

∂t

∮ [
2

m
(W − µB B)

]−1/2

ds

= −
∮ (

µB

m

∂B

∂t

)
ds

v‖
+ µB

m

∂B

∂t

∮
ds

v‖

= −
∫ τ‖

0

µB

m

∂B

∂t
dt + µB

m

∂B

∂t

∫ τ‖

0
dt

= −µB

m

[
B(τ‖)− B(0)− τ‖

∂B

∂t

]

∼ O(τ‖/tF)
2

where τ‖ is the transit time and tF the time scale for changes in B. Provided tF 
 τ‖

dJ

dt
= 0 (2.37)
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Fig. 2.9. Earth’s radiation belts showing schematic spatial distributions of trapped pro-
tons (a) and electrons (b) across the energy ranges indicated. The contour label is the flux of
charged particles in units (number m−2 s−1).

Thus J is an adiabatic invariant. Since the transit time between mirror points
is many Larmor periods, the condition on ∂B/∂t in order that J be invariant is
clearly more stringent than that for µB. One can establish the adiabatic invariance
of J more generally by including a slowly varying time-dependent electric field. A
relativistic proof of J -invariance was given by Northrop and Teller (1960).

2.8.1 Mirror traps

Invariance of J is a particularly useful concept in determining particle trajectories
in complex magnetic fields and is often used in practice in preference to integrating
the guiding centre equations. One such application serves to characterize particles
injected into, and trapped by, the geomagnetic field. Van Allen and co-workers
first identified regions of energetic particles encircling the Earth in 1958. These
structures are known as the Van Allen radiation belts and similar belts have since
been identified in other planets where magnetospheres are present. The morphol-
ogy of the Earth’s radiation belts is complex, consisting of two regions, an inner
and an outer belt, shown schematically in Fig. 2.9. Protons of energies from 30
to a few hundred MeV were observed extending out to about 2RE, where RE is
the Earth radius. Protons populating the outer belt are much less energetic. There
is no comparable demarcation in the electron energy distribution across the two
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regions represented in Fig. 2.9. The distribution of electrons in the outer radiation
belt stretches virtually as far as the magnetopause at ∼ 10RE.

The particle populations in the Van Allen belts are distinct from ionospheric
distributions on the one hand and those of the solar wind on the other. Identifying
the sources of the Van Allen populations provides a key to understanding the
morphology of the radiation belts. The inner belt is characterized not only by
its energy distribution but by the fact that it is more stable than the outer belts.
Taken together these observations suggest distinct sources for inner and outer belt
components. Cosmic rays colliding with atoms result in disintegrations into nuclear
components. These include neutrons travelling outwards which decay to produce
energetic protons and electrons. Observations have confirmed that cosmic rays are
indeed a source for inner belt protons with energies of tens of MeV. The low energy
component on the other hand is thought to derive from an ionospheric source
while those at intermediate energies are variously solar wind particles that have
been accelerated as well as particles injected from the plasma sheet during auroral
events.

Although the detailed dynamics of the radiation belts is complicated it is clear
that the geomagnetic field serves as a magnetic trap for charged particles. The
geomagnetic field may be represented as a dipole (at any rate out to distances of
about 5RE beyond which the field is distorted by the solar wind) with the field
lines bunching at the north and south poles. Energetic particles injected into the
Earth’s magnetic field will describe helical trajectories and undergo reflection in the
stronger field regions around the magnetic poles, transit times for protons bouncing
between mirror points being of the order of a second. The stability of the Van Allen
belts is essentially a reflection of the invariance of J .

In addition to the bounce motion between mirror points, the results of Section 2.4
mean that particles drift azimuthally since field lines are curved and there exists a
magnetic field gradient normal to the direction of B. Electrons drift from west to
east and protons vice versa. For an electron with energy 40 keV, the time taken for
the guiding centre to complete a circuit is of the order of an hour. The guiding
centre of a particle generates a surface of rotation, which in some circumstances
may be closed. The periodicity associated with this drift leads to a third adiabatic
invariant in magnetic fields with suitable morphology.

2.9 Magnetic flux as an adiabatic invariant

The third adiabatic invariant is the flux � of the magnetic field through the surface
of rotation. A formal proof of the adiabatic invariance of � was given by Northrop
(1961). We present here a précis of Northrop’s proof. It is convenient to use a set
of curvilinear coordinates (α, β, s) where α(r, t), β(r, t) are parameters character-

Igor A. Kotelnikov
Highlight
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izing a field line and therefore constant on it while s represents distance along the
line. The parameters α and β, known as Clebsch variables, are chosen so that

A = α∇β B = ∇α × ∇β (2.38)

where A is the magnetic vector potential.
For time-dependent magnetic fields the particle energy K = 1

2 mv2
‖ + µB B +

eα∂β/∂t is no longer a constant of motion. The flux � through the longitudinal
invariant surface is a function of J, µB, K and t but since the first pair are known
adiabatic invariants we suppress this dependence and represent the flux as �(K , t).
Then

�(K , t) =
∮

A · dl =
∮
α∇β · dl =

∮
α dβ

in which the contour is any simply connected curve lying on the surface and

d�

dt
= ∂�(K , t)

∂K
〈K̇ 〉‖ + ∂�(K , t)

∂t
(2.39)

where 〈K̇ 〉‖ indicating an average of K̇ over motion along the field lines has been
substituted for K̇ since changes over a longitudinal transit time are not of interest
here. It is straightforward to show that (see Exercise 2.4)

∂�

∂K
=
∮

∂α

∂K
dβ = 1

e

∮
dβ

〈β̇〉 = τP

e

∂�

∂t
=
∮

∂α

∂t
dβ = −1

e

∮ 〈K̇ 〉‖ dβ

〈β̇〉 = −τP

e
〈〈K̇ 〉‖〉P

where τP denotes the period of precession of the guiding centre and 〈〈K̇ 〉‖〉P is the
average of 〈K̇ 〉‖ over a precession period. From these relations we see that

d�

dt
= τP

e

[〈K̇ 〉‖ − 〈〈K̇ 〉‖〉P
]

(2.40)

Although d�/dt �= 0 it is evident that the average rate of change of the magnetic
flux over a period of precession does vanish, i.e.〈

d�

dt

〉
P

= 0 (2.41)

Hence although K is no longer invariant for time-dependent magnetic fields, a
new adiabatic invariant � has been found in its place. A fuller discussion of the
properties of invariant surfaces has been given by Northrop (1963).

A summary of the properties of the three adiabatic invariants µB, J , and �

is set out in Table 2.1. It is perhaps worth noting that the stringent requirements
demanded of � (associated with the loss of phase information in averaging over
closed trajectories) make it a less useful invariant in practice than either µB or J .
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Table 2.1. Adiabatic invariants

Invariant Particle Periodicity Validity
characteristic conditions
motion

Magnetic Larmor τL = 2π/|�| τL � tF

moment orbit v2
⊥τL 	 const.

µB = W⊥/B

Longitudinal Longitudinal τ‖ τL � τ‖ � tF

invariant bounce between 〈v2
‖ 〉τ‖ 	 const. µB constant

J = ∮ v‖ ds mirror
fields

Flux invariant Azimuthal τP τL � τ‖
� = ∫ B · dS precession; 〈v2

P 〉τP 	 const. � τP � tF

drift velocity, µB constant
vp J constant

2.10 Particle orbits in tokamaks

Electron trapping in spatially inhomogeneous magnetic fields is important in the
physics of tokamaks. In Chapter 1 we saw that a tokamak is characterized by a
combination of toroidal and poloidal magnetic fields, Bt and Bp respectively, since
a toroidal field on its own is not capable of containing a plasma in equilibrium.
Anticipating our discussion of toroidal equilibria in Chapter 4, tokamaks are char-
acterized by an ordering of these fields such that Bt 
 Bp. The magnetic field lines
are helices wound on a toroidal surface. Particles whose guiding centres follow
such helical field lines and whose velocity components along the field are high
enough that they cycle round the torus make up the population of passing particles.
In contrast particles with lower velocities parallel to the field contribute to the
population of particles trapped on the outer side of the torus between magnetic
mirrors created by the poloidal variation of the field. The tokamak magnetic field
varies as 1/R where R = R0 +r cos θ ; R0 is the major radius of the tokamak and r
the minor radius of the surface on which the guiding centre of the particle lies, with
θ the poloidal angle. The ratio r/R0 = ε is known as the inverse aspect ratio and
serves as an expansion parameter. The magnetic field B(θ) may then be expressed
as

B(θ) = B(0)(1 − ε cos θ)/(1 − ε) (2.42)
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From the adiabatic invariance of µB we find

v2
‖
v2

0

= 1 − v2
⊥0

v2
0

(
1 − ε cos θ

1 − ε

)

It is clear from this expression that v‖ will vanish for θ satisfying

v2
‖0

v2
⊥0

= ε(1 − cos θ) (2.43)

where the right-hand side can assume values up to 2ε (at θ = π ). Clearly if
v2

‖0/v
2
⊥0 > 2ε, (2.43) cannot be satisfied and this condition defines the population

of passing particles. On the other hand if v2
‖0/v

2
⊥0 < 2ε there will be some value of

θ given by (2.43) for which v‖ = 0. This condition serves to define the population
of trapped particles.

Consider in turn the characteristics of passing and trapped particles. Two effects
contribute to the dynamics of passing particles. Superposed on the motion parallel
to the magnetic field which gives rise to rotation in the poloidal direction with
velocity vp = (Bp/Bt)v‖ is a combination of gradient and curvature drifts in the
toroidal magnetic field. Given that Bt is approximately inversely proportional to
the major radius R, it follows that the drift velocity vB defined by (2.24) is in
the vertical direction, ẑ. If we suppose that the cross-section is approximately
circular, the motion of the guiding centre projected on to the poloidal plane may be
represented as

ṙ

r θ̇
= vB sin θ

vp + vB cos θ
(2.44)

The drift orbit is thus

r

r0
=
[

1 + vB

vp
cos θ

]−1

(2.45)

where r = r0 for θ = π/2. The displacement of this distorted circle in the direction
of the major radius is determined by

|�pass| = r0

(
vB

v‖

)(
Bt

Bp

)
= q

�

(v2
‖ + 1

2v
2
⊥)

v‖
∼
(
v2

‖ + 1
2v

2
⊥

v⊥v‖

)
qrL (2.46)

where q = r0 Bt/RBp is a quantity known as the safety factor (see Section 4.3.1)
and rL is the particle Larmor radius in the toroidal magnetic field. For tokamaks, q
is typically about 3 near the plasma edge so that for passing particles the shift of
the drift orbit, shown in Fig. 2.10, is significantly bigger than a Larmor radius.

Dealing with the trapped particles is more difficult but by making use of con-
stants of the motion one can determine the size of the drift orbits for this population
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trapped

passing

Fig. 2.10. Orbits of passing and trapped particles in a tokamak projected on the poloidal
plane.

as well. The procedure is outlined in Exercise 2.5. Trapped particles describe the
banana orbits shown in Fig. 2.10. The width of a banana orbit is approximately

|�tr| ∼ 2

(
2R

r

)1
2

qrL (2.47)

We see from this estimate that trapped particle orbits can be an order of magnitude
bigger than a Larmor radius.

2.11 Adiabatic invariance and particle acceleration

Particle acceleration is of widespread interest in both laboratory and space plasmas.
As an example we consider an idea originally put forward by Fermi (1949) to ac-
count for the very energetic particles (O(1018 eV)) in cosmic radiation. How such
enormous energies are attained is obviously a key question in cosmic ray theory.
Fermi postulated that there are regions of space in which clumps of magnetic field
of higher than average intensity occur with charged particles trapped between them.
He argued that these magnetic clumps would not be static and trapped particles
could be accelerated if such regions were approaching one another. By the same
token, particles would lose energy in mirror regions that were separating. Fermi
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s1 s2′′s1 s2

Fig. 2.11. Variation of v‖ between mirror points s1 and s2. If the field maxima approach
one another, so do the mirror points and at some later time the phase trajectory is given by
the curve from s′

1 to s′
2.

showed that the probability of head-on collisions was greater than that of overtak-
ing collisions, their relative frequencies being proportional to (v‖ + vB)/(v‖ − vB)

where vB is the velocity of the magnetic clump.
To see how Fermi acceleration works suppose a charged cosmic ray particle

is trapped between two magnetic mirrors which move towards one another suffi-
ciently slowly that J is a good adiabatic invariant. Suppose too that at t = 0 the
coordinates of the mirror points in the phase space diagram, Fig. 2.11, are s1 and
s2, while at some later time, t ′, they shift to s ′

1 and s ′
2 respectively. The invariance

of J means that the area enclosed by the phase space orbit is constant. Denoting
s1 − s2 by s0, s ′

1 − s ′
2 by s ′

0 gives

v′
‖ 	 v‖

s0

s ′
0

where v‖, v′
‖ are the parallel components of velocity at the mid-plane at t = 0,

t = t ′, respectively. Then

W ′
‖ =

(
s0

s ′
0

)2

W‖

and

W ′ = W ′
⊥ + W ′

‖ = m

2

[
v2

⊥ +
(

s0

s ′
0

)2

v2
‖

]

by making use of the invariance of µB (assuming the field is constant at the mid-
plane). Thus the energy of a particle trapped between slowly approaching magnetic
mirrors increases. As proposed originally, Fermi acceleration suffers from a serious
limitation. For increasing v‖, the pitch angle defined by (2.33) decreases so that at
some stage a particle being accelerated falls into the loss cone and escapes, thus
limiting the gain in energy.
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2.12 Polarization drift

Up to this point we have not allowed for any time-dependent electric fields, having
set Ė = 0 (in Section 2.5) to exclude plasma oscillations. We now want to relax
this condition and allow for a slow time variation in an applied electric field. Doing
so introduces yet another drift, the polarization drift, to add to those discussed
earlier. To see how polarization drift comes about, we return to the configuration
analysed in Section 2.3 with an electric field acting in a direction perpendicular to
an applied magnetic field. By slow time dependence of the electric field we mean
slow compared with the Larmor period of the particle. Starting with (2.12) and
(2.13) which we used to identify the E × B drift, we introduce a transformation
Ẋ = ẋ − eE⊥/m� to move to the drift frame. In this frame

Ẍ = �

(
ẏ − e

m�2

dE⊥
dt

)
ÿ = −�Ẋ (2.48)

If we now apply a second transformation

Ẏ = ẏ − e

m�2

dE⊥
dt

and make use of the fact that the time scale of variation of the electric field is much
longer than a Larmor period, the equations of motion in this new frame reduce to
the Larmor equations for motion in a magnetic field alone. This establishes that in
addition to the E × B drift there is now a polarization drift, with drift velocity vP

given by

vP = m

eB2

dE
dt

(2.49)

The polarization drift has distinct properties compared with the E × B drift. Since
vP is charge-dependent, electron and ion drifts are in opposite directions but the
mass dependence means that the ion drift is dominant. Associated with the drift is
a polarization current density

jp 	 nim i

B2

dE
dt

which contributes to the total current density in general (see Section 2.5). The name
polarization drift comes from the fact that the electric field inside most plasmas
derives not from an externally applied source but from the polarization of the
plasma due to charge separation.
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2.13 Particle motion at relativistic energies

To describe the motion of particles of relativistic energy we have to revert to the
full Lorentz equation,

d

dt
(γmv) = e(E + v × B) (2.50)

where γ = (1−v2/c2)1/2. It is possible to set about solving the Lorentz equation for
the various field configurations considered earlier. For example a particle moving
with relativistic velocity in a constant, uniform magnetic field B, with energy E =
γmc2 is now characterized by a Larmor frequency

� = eB

mγ
(2.51)

In the case of motion in constant, uniform electric and magnetic fields we no longer
need to insist that E‖ = 0 as in Section 2.3. In general one can repeat the analysis
of slowly varying magnetic fields in the drift approximation using the full Lorentz
equation and again establish the existence of adiabatic invariants. However, these
exercises are of limited value and rather than go down this road we turn instead
to a problem of greater practical interest, the relativistic motion of particles in an
electromagnetic field.

2.13.1 Motion in a monochromatic plane-polarized electromagnetic wave

For a plane-polarized wave propagating in the x direction, E = (0, E, 0), and
B = (0, 0, B). We can conveniently describe the fields by their vector potential,
A = (0, a(τ ) cosωτ, 0), where a is the amplitude of the wave, ω the frequency,
and τ = t − x/c. For a truly monochromatic wave a is constant. In practice,
however, a can never be constant since the amplitude must grow from zero when
the wave is switched on. Moreover, treatments which assume a is constant lead
to solutions depending critically on the initial phase and thereby predict electron
drifts in arbitrary directions (see Exercise 2.7). For an almost monochromatic wave,
a(τ ) must be a slowly varying function and the only significant effect of including
its variation is to ensure that the fields are initially zero; dependence on the initial
phase does not then appear. E and B are given by the usual equations

E = −∂A
∂t

B = ∇ × A

from which it follows in the case of a plane-polarized wave

E = cB = −dA

dτ



2.13 Particle motion at relativistic energies 39

The relativistic Lorentz equation gives

d

dt
(γ ẋ) = eB

m
ẏ = − e

mc
ẏ

dA

dτ
(2.52)

d

dt
(γ ẏ) = e

m
(E − Bẋ) = − e

mc
(c − ẋ)

dA

dτ
(2.53)

d

dt
(γ ż) = 0 (2.54)

d

dt
(γ c) = eE

mc
ẏ = − e

mc
ẏ

dA

dτ
(2.55)

Subtracting (2.52) from (2.55) gives, on integrating,

1 − ẋ/c = (1 − v2/c2)1/2 (2.56)

assuming that the electron is initially at rest at the origin. Since

dτ

dt
= 1 − ẋ

c
(2.57)

(2.53) may be integrated directly:

ẏ/c

(1 − v2/c2)1/2
= − eA

mc
(2.58)

Substituting for ẏ from (2.58) and using (2.56) and (2.57), (2.52) becomes

d

dt
(γ ẋ/c) =

( e

mc

)2
A

dA

dτ

dτ

dt

Hence,

γ ẋ/c = 1

2

(
eA

mc

)2

Finally, using (2.56) and (2.57) again,

ẋ = c

2

(
eA

mc

)2 dτ

dt
= c

2
a2

0

dτ

dt
cos2 ωτ (2.59)

ẏ = −c

(
eA

mc

)
dτ

dt
= −ca0

dτ

dt
cosωτ (2.60)

and from (2.54)

ż = 0 (2.61)
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where a0 = (ea/mc). Averaging ẋ over one period (T = 2π/ω), a(τ ) may be
treated as constant,

〈ẋ〉 =

∫
ẋ dt∫
dt

=
c

2
a2

0

∫
cos2 ωτ dτ∫

(dτ + dx/c)

=
c

2
a2

0

∫
cos2 ωτ dτ∫

dτ

(
1 + 1

2
a2

0 cos2 ωτ

) = ca2
0

4 + a2
0

(2.62)

Similarly,

〈ẏ〉 = 0

For a0 < 1, the motion is effectively the quiver motion of the electron in the E
field of the wave (i.e. along Oy) but in addition the electron drifts in the direction
of propagation of the wave with drift velocity

vW = e2

2m2ω2
〈E × B〉 (2.63)

For highly relativistic electrons a0 
 1 and 〈ẋ〉 → c. Electrons with relativistic
energies appear as a consequence of the interaction of ultra-intense laser light (typ-
ically ∼1020 W cm−2) with plasmas. Evidence of electrons drifting in the direction
of propagation of the light has been found from both simulations and experiments.
An interesting effect of this drift velocity is to predict a Doppler shift in the fre-
quency of light scattered by free electrons (see Kibble (1964)).

It is a straightforward exercise to integrate the equations of motion to determine
the electron trajectory, which has the form of a figure-of-eight. Experiments by
Chen, Maksimchuk and Umstadter (1998) have confirmed the figure-of-eight tra-
jectory.

2.14 The ponderomotive force

Spatial inhomogeneities give rise to another non-linear effect which plays a key
role in the interaction of intense electromagnetic radiation with plasmas. For con-
sistency we ought to use the full Lorentz equation but to keep the argument simple
we revert to non-relativistic dynamics. Let us represent the spatially varying oscil-
lating electric field as

E(r, t) = E(r) cosωt (2.64)
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Fig. 2.12. Snapshot of the channel formation in the interaction of laser light of intensity
3×1019 W cm−2 with a plasma slab. The strong ponderomotive force from the intense laser
beam incident from the left forms a channel approximately 4 µm across and 10 µm deep
(at 850 fs). White denotes densities below nc = 1021 cm−3, green (1–4)nc, blue (4–7)nc,
red (7–12)nc and magenta over 12nc (after Dyson (1998)).

and write E(r) in terms of an expansion about the initial position of the particle r0

E(r) = E(r0)+ (δr · ∇)E|r=r0 + · · · (2.65)

To lowest order we use the value E(r0) for the electric field so that the correspond-
ing particle displacement δr, is

δr = − eE
mω2

cosωt (2.66)

To next order we must keep the v × B contribution to the Lorentz equation giving

r̈1 = e

m

[
(δr · ∇)E + ṙ × B

]
(2.67)
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Substituting for δr from (2.66) and averaging out the time dependence of the fields
gives

〈̈r1〉 = −1

2

( e

mω

)2
[(E · ∇)E + E × (∇ × E)]

= −
( e

2mω

)2
∇E2(r0) (2.68)

Since the force is inversely proportional to particle mass it acts principally on elec-
trons. The effect is that electrons are displaced from regions of high field intensity.
If we suppose that the individual contributions from all electrons in unit volume
of plasma may be added we arrive at an expression for the plasma ponderomotive
force

FPM = −ω2
p

ω2
∇
〈

1

2
ε0 E2

〉
(2.69)

Although the ponderomotive force displaces electrons from regions of high electric
field to regions of weak field, the consequent charge separation creates a powerful
electrostatic field which acts to pull the ions in the wake of the electrons. Simula-
tions using large numbers of plasma particles provide a dramatic illustration of the
ponderomotive force in the interaction of intense light with dense plasmas. High
intensity laser light produces such a strong ponderomotive force that the plasma is
pushed aside and a channel formed. Figure 2.12 shows channel formation when an
intense laser beam is incident from the left on a plasma slab.

2.15 The guiding centre approximation: a postscript

Throughout this chapter we have made repeated use of Alfvén’s idea of averaging
out motion on the fast Larmor time scale to allow attention to focus on the motion
of the guiding centre. To lowest order the particle gyrates about its guiding centre
rg where r = rg−(ṙ×b)/�with b = B/|B|. In this way we examined a number of
guiding centre drifts in isolation by making assumptions about field configurations
and imposing restrictions on the kind of inhomogeneity allowed in the fields. We
found that gradient and curvature components of [∂Bi/∂x j ] gave rise to drifts of the
guiding centre, whereas divergence and shear components do not. There remains
the question as to whether the drifts already identified for particular choices of field
inhomogeneity provide a correct description of guiding centre motion in the case
of a general static inhomogeneous magnetic field. To try to answer this one might
represent the magnetic field making use of the expansion parameter ε = rL/L; then
to first order:

B = Bg + (r − rg) · ∇B |r=rg
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One may then set about a general formulation of drifts to this order
(Kruskal (1962), Northrop (1963), Morozov and Solov’ev (1966)). The answer
turns out to be reassuring, but with one surprise. To order ε, the velocity of the
guiding centre vg is given by Balescu (1988)

vg =
[
v‖ + εv2

⊥
2�

b · (∇ × b)
]

b + ε
E × B

B2
+ ε

v2
⊥

2�B
b × ∇B +

εv2
‖

�
b × (b · ∇)b (2.70)

This result does indeed reproduce the E × B, ∇B and curvature drifts. However,
an unexpected contribution appears in the velocity parallel to the magnetic field,
where intuitively all we expect is v‖b. Various attempts have been made at a
physical interpretation of the O(ε) contribution to the parallel component of the
guiding centre velocity. Morozov and Solov’ev (1966) argued that it ought to be
removed by transforming to a new system of coordinates which ensures both con-
servation of energy as well as adiabatic invariance of µB. It turns out that the root
of the problem lies in the averaging used by Alfvén to remove the Larmor motion
from the dynamics, since this destroys the Hamiltonian structure of the system. A
reappraisal by Littlejohn (1979, 1981) pointed the way round the difficulty. The
issues at stake have been discussed in detail by Balescu (1988). The outcome is
that by following Littlejohn’s procedure, the physically spurious O(ε) term in the
guiding centre velocity parallel to the magnetic field disappears.

Exercises

2.1 For non-relativistic motion in inhomogeneous magnetic fields:

(a) Verify (2.22) for B = (0, 0, B(r)) in which spatial inhomogeneities
are small but otherwise arbitrary. [Hint: use (2.5) to show that B is not
a function of z.]

(b) Verify that there is no mean drift velocity for a charged particle moving
in the field B = (0, By(x), B). Assume By , dBy/dx are small.

(c) With B = (0, By(z), B), where both By, dBy/dz are small quantities,
show that the curvature drift vC = −x̂mv2

‖(dBy/dz)/eB2 and is given
generally by (2.23). Show that there is in addition a drift in the y-
direction given by v‖ By/B. Compare the relative magnitude of this
drift with the curvature drift.

(d) A charged particle whose guiding centre lies initially on Oz moves in
a converging, time-independent field

B = B0

[
−α

2
r + (1 + αz)ẑ

]



44 Particle orbit theory

where α > 0 is a constant such that αrL � 1. Show that the particle
motion is governed by the equations

ẍ −�ẏ = α�(z ẏ + 1
2 yż) z̈ = 1

2α�(x ẏ − yẋ)
ÿ −�ẋ = −α�(zẋ + 1

2 x ż)

Show that to first order in αrL, z̈ = 1
2rLv

2
⊥ and interpret this result

physically. Establish the adiabatic variance of µB.
(e) Near the equator the geomagnetic field may be approximated by

B(z) = B0(1 + (z/z0)
2) where z denotes the coordinate along the

field and B0, z0 are positive constants. Show that particle motion near
the equator is simple harmonic with period τ = 2π z0(m/2µB B0)

1/2

provided µB is a good adiabatic invariant.
(f) A particle with charge e and mass m moves in the bumpy field B =

(b sin kz, b cos kz, B0) where k, b and B0 are constant and b/B0 � 1.
The particle is initially at the origin with velocity v(0) = (0, 0, ż0).
Assuming that � �= kż0, find ẋ , ẏ to first order in b and show that

ż2 = ż2
0 + 2�2 ż2

0

(�− kż0)2
[cos(�− kż0)t − 1]

(g) The field in the geomagnetic tail (see Section 5.5.1) may be modelled
in one dimension as

Bz = B0 z ≥ L
= B0z/L −L ≤ z ≤ L
= −B0 z ≤ −L

where z = 0 corresponds to the neutral sheet and 2L is the thickness of
the plasma sheet. In such a representation µB is no longer adiabatically
invariant. Write down the components of the Lorentz equation and
integrate to find ẏ and ż.

2.2 The geomagnetic field may be represented in terms of a dipole of moment
M = −M ẑ, with components

BR = −µ0 M

2π

sin λ

r3
Bλ = µ0 M

4π

cos λ

r3
Bφ = 0

in which λ = (π/2 − θ) denotes latitude.
Show that the equation for a field line is r = r0 cos2 λ and write down

an expression for the magnitude of the magnetic field B(r, λ). Show that
the ratio of the magnetic field to that at the equator B0 is

B

B0
= (1 + 3 sin2 λ)1/2

cos6 λ
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Using the representation for B/B0, obtain an expression for the bounce
time τB for trapped particles. Compute bounce times for magnetospheric
electrons of energy 10 keV for a range of values of r0/RE where RE is the
Earth radius.

2.3 The combined gradient and curvature drift velocity vB in (2.24) may be
expressed in terms of the pitch angle α:

vB = mv2

2eB3
(1 + cos2 α)B × ∇B

(a) Use this result to show that at the equator vB = −(3mv2/2eBr)φ̂φφ
where φ̂φφ is the azimuthal unit vector.

(b) Show that the drift of electrons and ions contributes to a current, known
as the Earth’s ring current, given by

Iring = −3
∫

nmv2 dV

4πr2 B

In which direction does Iring flow? For 1 MeV protons and 100 keV
electrons, assuming n ∼ 107 m−3, show that Iring ∼ 1 MA at r ∼ 4RE.

(c) For these parameters estimate the time needed for a proton to drift
round the Earth.

(d) Find the extent to which the geomagnetic field is perturbed by the ring
current. [To do this you need to include the diamagnetic contribution
from the Larmor motion (see Section 2.2.1).]

2.4 Verify the results used in Section 2.9 to establish that � is an adiabatic
invariant. [To show this you need to differentiate K [α(β, K , t), β, t] im-
plicitly.]

2.5 Show that the drift orbit for passing particles in a tokamak is given by
(2.45).

One way of dealing with trapped particles in a tokamak is to start from
an integral of the motion in the guiding centre approximation. Conserva-
tion of toroidal momentum is expressed by R(mv‖ + eAφ) = constant,
where Aφ is the toroidal component of the vector potential A. If we make
use of this integral of the motion at points at which the particle orbit inter-
sects the plane z = 0 we have −e(R1 Aφ1 − R2 Aφ2) = m(R1v‖1 − R2v‖2).
For trapped particles

R1 Aφ1 − R2 Aφ2 =
∫ R1

R2

∂

∂R
(R Aφ) dR =

∫ R1

R2

RBz dR = RBz�R

Show that at the points of intersection, taking Bz = Bp0 where Bp0 denotes
the poloidal field at the mid-plane where we set |v‖1| = |v‖2|, the width of
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the orbit of a trapped particle, the so-called banana orbit (see Fig 2.10), is
given by (2.47).

2.6 Consider a particle of charge e and mass m moving in an electric field
E sin(kx −ωt). Particles whose velocities are close to the phase velocity of
the wave are strongly affected by the wave field and exchange energy with
the wave. The motion of a particle initially at x0 moving with velocity v0 is
perturbed by the wave field in such a way that x = x0 +v0t +x1 +x2, v =
v0 + v1 + v2 where subscripts 1 and 2 denote corrections proportional to E
and E2 respectively.

Show that

v1 = eE

mω̃
[cos(kx0 − ω̃t)− cos kx0]

v̇2 = −ke2 E2

m2ω̃2
cos(kx0 − ω̃t)[sin(kx0 − ω̃t)− sin kx0 + ω̃t cos kx0]

where ω̃ = ω − kv0.
Show that the rate of change of the energy of the particle averaged over

random initial positions is given by

〈δṪ 〉 = e2 E2

2m

[
sin ω̃t

ω̃
+ kv0

ω̃2
(sin ω̃t − ω̃t cos ω̃t)

]

Using the representation of the delta function

δ(ω̃) = lim
t→∞

sin ω̃t

πω̃

show that

〈δṪ 〉 = πe2 E2

2m|k|
∂

∂v0

[
v0δ

(
v0 − ω

k

)]

2.7 Calculate the mean velocity of a charged particle in the electric field E =
E0 cos(ωt + θ0), where E0 and θ0 are constants, assuming that relativistic
effects are negligible. Repeat the calculation assuming that E0 is a slowly
varying function (i.e. terms of order (dE0/dt)/ωE0 may be neglected) with
E0(0) = 0. Comment on the different results in the two cases.

2.8 Consider a relativistic charged particle moving in a constant, uniform mag-
netic field B = B0k̂. Show that the velocity of the particle is again given
by (2.9) but with � = �0/γ in place of �0.

2.9 Show that the Lorentz equation (2.50) may be rearranged to give

β̇ββ = e

mγ c
[E − (βββ · E)βββ + cβββ × B]
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where βββ = v/c. Note that for E = 0, the result of the previous exercise
follows by inspection.

2.10 Integrate (2.59) and (2.60), ignoring terms of order (da/dτ)/aω. Sketch
the trajectory of the particle.

2.11 The vector potential for a monochromatic, plane wave of arbitrary polar-
ization propagating in the x-direction is

A = a(τ )[0, α cosωτ, (1 − α2)1/2 sinωτ ]

where τ = t − x/c, 0 ≤ α ≤ 1 and the amplitude a(τ ) is slowly varying.

(a) Integrate the relativistic Lorentz equation to obtain the velocity of an
electron interacting with this wave, assuming that the electron starts
from rest at the origin. Hence show that the drift velocity is the same
as that for a plane-polarized wave (α = 1).

(b) In the case in which the incident wave is circularly polarized show that
the projection of the electron trajectory on the Oyz-plane is a circle of
radius (eE/γmω2).

(c) The gyration of an electron induces a magnetic field which is par-
allel (antiparallel) to the direction of wave propagation according to
whether the wave field is left (right) circularly polarized. If one as-
sumes (as in Section 2.2) that one may add the contributions from
individual electrons, the resulting current is in turn the source of a
magnetic field (the inverse Faraday effect). Show that the inverse
Faraday field, BF, may be expressed in terms of the Compton field,
BC = mω/e, as

BF = ω2
p

2ω2

a2
0

(1 + a2
0)

BC

where a0 = eE/mωc. Estimate BF in the case of laser light with
intensity I = 1020 W cm−2 interacting with a dense plasma.

2.12 Consider the case of a circularly polarized wave field propagating in the
direction of a constant uniform magnetic field B = B0x̂. Show that in
the plane perpendicular to the magnetic field the Lorentz equation may be
written as

ζ̈ + i�ζ̇ =
(

eE

γmω2

)
eiφ

where ζ = y + i z. Solve the Lorentz equation for the special case of
cyclotron resonance, ω = �.
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Macroscopic equations

3.1 Introduction

When the fields induced by the motion of the plasma particles are significant in
determining that motion, particle orbit theory is no longer an apt description of
plasma behaviour. The problem of solving the Lorentz equation self-consistently,
where the fields are the result of the motion of many particles, is no longer practi-
cable and a different approach is required. In this chapter, by treating the plasma as
a fluid, we derive various sets of equations which describe both the dynamics of the
plasma in electromagnetic fields and the generation of those fields by the plasma.

The fluid equations of neutral gases and liquids are usually derived by treat-
ing the fluid as a continuous medium and considering the dynamics of a small
volume of the fluid. The aim is to develop a macroscopic model that, as far as
possible, is independent of the detail of what happens at the molecular level. In this
sense the approach is the opposite of that adopted in particle orbit theory where
we seek information about a plasma by examining the motion of individual ions
and electrons. In experiments one seldom makes measurements or observations
at the microscopic level so we require a macroscopic description of a plasma
similar to the fluid description of neutral gases and liquids. This is obtained here
by an extension of the methods of fluid dynamics, an approach that conveniently
skims over some fundamental difficulties inherent in plasmas. The chief of these
is that a plasma is not really one fluid but at least two, one consisting of ions
and the other electrons. The fact that these two fluids are comprised of particles
with opposite charges and very unequal masses gives rise to phenomena that do
not occur in neutral fluids, even those with more than one molecular compo-
nent. Nevertheless, a single fluid description of a plasma is in many situations
a useful and plausible model and one that is widely employed. Our first objec-
tive, therefore, is the derivation of the one-fluid, magnetohydrodynamic (MHD)
equations.

48
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The fundamental assumption of MHD is that fields and fluid fluctuate on the
same time and length scales. Since the plasma is treated as a single fluid, these are
necessarily determined by the slower rates of change of the heavy ions. However,
in so far as electrons may behave independently of ions a plasma is able to support
rapid wave fluctuations that are beyond the scope of the MHD equations. A second
objective, therefore, is the derivation of the so-called plasma wave equations. Like
the MHD equations, these are macroscopic fluid equations but the assumptions
underlying them are quite different. In particular, since the rapid motion of the
more mobile electrons must be distinguished from the slow response of the ions,
this is necessarily a two-fluid description.

The final task of this chapter is a discussion of the boundary conditions appli-
cable in the solution of the macroscopic equations we derive. These, of course,
vary from problem to problem but, as in electromagnetic theory, there are certain
general results which it is useful to establish once and for all.

3.2 Fluid description of a plasma

Before embarking on the actual derivation of the MHD equations it is helpful to dis-
cuss briefly some general concepts of fluid dynamics. First, as already mentioned,
the fluid is treated as a continuous medium so that all macroscopic quantities are
continuous functions of position r and time t . This assumption of continuity pre-
supposes that one is interested in phenomena which vary on a hydrodynamic length
scale LH which, at the very least, is much greater than the average interparticle
distance. This then leads on to the concept of a fluid element, a volume of fluid
small enough that any macroscopic quantity has a negligible variation across its
dimension but large enough to contain very many particles and so to be insensitive
to particle fluctuations. To distinguish it from an element of volume δV , we denote
the volume of a fluid element by δτ .

Since any quantity F is a function of position and time its variation

dF(r, t) = ∂F

∂t
dt + ∂F

∂ri
dri

and, in particular, its time rate of change is given by

dF

dt
= ∂F

∂t
+ ∂F

∂ri

dri

dt
= ∂F

∂t
+ v · ∇F (3.1)

where v is the velocity at the point r and time t . If, as will usually be the case, we
are interested in the rate of change of F following a fluid element then v = u(r, t),
the velocity of the fluid element or flow velocity, and for this special case it is
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customary to replace d/dt by D/Dt to indicate this particular choice. Thus

DF

Dt
≡ ∂F

∂t
+ u · ∇F (3.2)

is the time derivative of F as we follow the motion of a fluid element. This is
known as the material or substantive derivative and the term (u ·∇)F is called the
convective derivative.

Frequently in fluid theory, and particularly in deriving the fluid equations, we
need the time derivatives of surface and volume integrals. Generalizing Leibnitz’s
theorem (see Fig. 3.1)

d

dt

∫ b(t)

a(t)
F(x, t)dx =

∫ b

a

∂F

∂t
dx + db

dt
F(b, t)− da

dt
F(a, t)

to two and three dimensions, respectively, we have

d

dt

∫
A(t)

F(r, t) · dA =
∫

A(t)

∂F
∂t

· dA +
∮

C(t)
F(r, t) · vC × dl (3.3)

and
d

dt

∫
V (t)

F(r, t)dV =
∫

V (t)

∂F

∂t
dV +

∫
A(t)

F(r, t)vA · dA (3.4)

In (3.3) the area of integration A(t) is bounded by the closed curve C(t) and
vC(r, t) is the velocity of the line element dl. In (3.4) the volume of integration
V (t) is bounded by the surface A(t) and vA(r, t) is the velocity of the surface
element dA. These equations are quite general and may be applied to any surface or
volume. Equation (3.3) is for future reference in Chapter 4. Here we are concerned
with (3.4). Two cases of particular interest are:

(i) Fixed volume V
Here V is constant in time so its boundary is fixed and vA ≡ 0 giving

d

dt

∫
V

F(r, t)dV =
∫

V

∂F

∂t
dV (3.5)

(ii) Fluid element δτ
Here vA = u, the fluid velocity and, writing D/Dt for d/dt to indicate this
special choice, we get

D

Dt

∫
δτ

F(r, t)dτ =
∫
δτ

∂F

∂t
dτ +

∫
δS

Fu · dS

=
∫
δτ

[
∂F

∂t
+ ∇ · (Fu)

]
dτ (3.6)

where δS is the surface of the fluid element δτ and we have applied Gauss’
divergence theorem.
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a(t) b(t)a(t+δt) b(t+δt) x

F(x,t) F(x,t)

C(t)

A(t)

(a)

(b)

δl

vC δt

|δA| = |vC δt × δl|

dV = vA dt . n dA

dA = ndA

n

vA t

(c)

δ δa b

 δ

 δ

Fig. 3.1. Illustration of Leibnitz’s theorem (in one dimension) and its extension to integrals
over (b) two dimensions and (c) three dimensions.

The first of the macroscopic equations that we derive expresses conservation of
fluid mass. Consider a fixed closed surface A lying entirely within the fluid and
enclosing a volume V . If ρ(r, t) is the mass density of the fluid at position r and
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time t then the total mass of fluid enclosed by A at time t is
∫

V ρ dV and the net
rate at which mass is flowing outwards across the surface A is

∫
A ρu · dA. Thus

d

dt

∫
V
ρ dV = −

∫
A
ρu · dA

and using (3.5) with F = ρ and Gauss’ divergence theorem once more, this
becomes ∫

V

[
∂ρ

∂t
+ ∇ · (ρu)

]
dV = 0

But this is valid for any volume V lying entirely within the fluid from which we
conclude that the integrand must be identically zero at every point in the fluid.
Hence, mass conservation is expressed by the equation of continuity

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.7)

Using (3.7) and setting F = ρ f in (3.6) we get

D

Dt

∫
δτ

ρ f dτ =
∫
δτ

ρ
D f

Dt
dτ (3.8)

in which we note that on the right-hand side D/Dt acts only on f even though ρ is
variable. This is a useful formula both in the derivation of the fluid equations and
in applications. For example, it enables us to show quite generally that if φ(r, t)
represents the amount of any macroscopic quantity per unit mass, so that the total
amount in a fluid element is

∫
δτ
ρφ dτ , and if this changes under the action of

influences represented by Q(r, t) at a rate given by
∫
δτ

Q dτ then

D

Dt

∫
δτ

ρφ dτ =
∫
δτ

ρ
Dφ

Dt
dτ =

∫
δτ

Qdτ

and hence, since δτ is arbitrary,

ρ
Dφ

Dt
= Q (3.9)

We now use (3.9) to obtain the equation of motion of a fluid element. Here
φ = u(r, t), the fluid velocity or the momentum per unit mass. The forces which
produce changes in the momentum of the fluid element can be long range or short
range. Long range forces are approximately the same for all particles in the fluid
element and can be treated as ‘body’ or volume forces represented by

∫
δτ
ρF dτ ,

where F is the force per unit mass. Short range forces arising from particle inter-
actions, although acting throughout the fluid element, produce net changes in its
momentum only at its surface. The force per unit area (stress) is represented by the
stress tensor whose elements �i j specify the i-component of the force on unit area
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Fig. 3.2. Stress tensor.

normal to the j-direction; see, for example, Batchelor (1967). Figure 3.2 illustrates
the stress tensor in Cartesian geometry. One normal and two tangential components
of force act on each element of surface normal to the x, y and z directions; only
the forces acting on the first of these are shown explicitly. It follows that the
i-component of the total force on the fluid element is given by

∫
δS �i j n j dS where

n is the unit vector normal to the surface element dS. Thus, with φ = u(r, t) we
have

D

Dt

∫
δτ

ρu dτ =
∫
δτ

ρF dτ +
∫
δS
��� · n dS

and, on using (3.8) and Gauss’ theorem, this becomes∫
δτ

(
ρ

Du
Dt

− ρF − ∇ ·���
)

dτ = 0

giving in differential form

ρ
Du
Dt

= ρF + ∇ ·���
or

ρ
Dui

Dt
= ρFi + ∂�i j

∂r j
(3.10)

In a neutral fluid at rest the stress tensor is isotropic (there is no preferred
direction) and is written

�i j = −Pδi j (3.11)
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where P (= −�i i/3) is the thermodynamic pressure and δi j is the Kronecker delta;
the negative sign is introduced because by definition a positive normal component
of �i j represents a tension rather than a compression. For future reference we
note that a magnetized plasma does have a preferred direction and may not be
isotropic but have different pressures parallel and perpendicular to the direction of
the magnetic field; we ignore this possibility for the moment and return to it in
Section 3.4.1.

For a fluid in motion the stress tensor is, in general, no longer isotropic but it is
customary to write it as the sum of isotropic and non-isotropic parts:

�i j = −Pδi j + di j (3.12)

Here we define the pressure P to be the (negative) mean normal stress

P = −�i i/3 (3.13)

This is an appropriate definition of the pressure of a fluid in motion since it is the
quantity that would be measured in an experiment. However, it should be noted
that it cannot be assumed to be the same as the thermodynamic pressure which is
defined for a fluid in equilibrium. We shall ignore this difference since it gives rise
to a correction which is important only for fluids with rotational and vibrational
degrees of freedom and is therefore negligible for a fully ionized plasma. This is
equivalent to the neglect of the bulk viscosity compared with the shear viscosity.

The non-isotropic part of the stress tensor, di j , is called the viscous stress tensor
and by definition of P , dii = 0. The elements di j are related to the gradients of
the components of the flow velocity, ∂ui/∂r j , since it is the rate of change of
momentum across the surface of the fluid element which produces the stress. Since
the flow velocity changes very little on the scale of the fluid element it follows that
the gradients are very small and a linear relationship may be assumed. It may then
be shown (see Batchelor (1967)) that

di j = µ

(
∂ui

∂r j
+ ∂u j

∂ri
− 2

3
δi j∇ · u

)
(3.14)

where the coefficient of proportionality µ is called the coefficient of (shear) vis-
cosity. It is found experimentally and can be shown theoretically (see Sections 8.2
and 12.6.3) that µ is a function of temperature and may, therefore, vary across the
fluid.

Substituting (3.14) in (3.12) and (3.12) in (3.10) gives

ρ
Dui

Dt
= ρFi − ∂P

∂ri
+ ∂

∂r j

[
µ

(
∂ui

∂r j
+ ∂u j

∂ri
− 2

3
δi j
∂uk

∂rk

)]
(3.15)
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which is a general form of the Navier–Stokes equation. If temperature differences
across the fluid are not too large, µ may be treated as constant giving

ρ
Du
Dt

= ρF − ∇P + µ

[
∇2u + 1

3
∇(∇ · u)

]
(3.16)

Assuming for the moment that F is given, it is clear that, whichever of these
forms of the equation of motion may be appropriate, we need at least one more
equation for P . We may anticipate that this will be provided by consideration
of energy conservation and indeed it is. But this alone does not close the set of
equations; closure is achieved by means of the relations of classical thermodynam-
ics. There are two reasons why we need the thermodynamic relations. In the first
place energy balance introduces the internal energy of the fluid element and this
is a thermodynamic variable; it depends on the thermodynamic state of the fluid.
Secondly, in addition to the coefficient of viscosity appearing in the momentum
equation, energy balance brings in more transport coefficients and these, too, are
functions of the state variables such as ρ and T .

There is any number of state variables, each of which has its particular use, but
experiments have established empirically that for fluids in equilibrium all thermo-
dynamic properties can be expressed in terms of any two state variables. We shall
take P and ρ as the two independent variables so that every other state variable is
then expressed as a function of these two by means of an equation of state. Thus
our set of equations will be closed by the energy equation (for P) plus as many
equations of state as there are state variables (other than ρ and P) appearing in the
transport coefficients or elsewhere in the energy equation.

Fluids in motion are clearly not in equilibrium. Nevertheless, it has been found
that classical thermodynamics may be applied to non-equilibrium states provided
that the fluid passes through a series of quasi-static equilibrium states. Then if
P and ρ, say, are given by their instantaneous values all the other state variables
can be defined in terms of these two by their equations of state. In order that a
quasi-static equilibrium be established we assume that changes in the macroscopic
variables take place on a time scale long compared with the relaxation time for the
attainment of local equilibrium.

The first law of thermodynamics is a statement of energy conservation in that it
equates the change in the internal energy per unit mass E between two equilibrium
states to the sum of the increase in heat energy per unit mass and the work done
per unit mass on the system, that is

dE = dQ + dW (3.17)

Note that E is a state variable so that dE depends only on the initial and final states
and not on the manner in which the change in internal energy is brought about. On
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the other hand Q and W are path variables and there is an infinite choice of values
of dQ and dW for implementing any internal energy change dE . In particular, if a
change of state is accomplished with no gain or loss of heat, i.e. dQ = 0, we have
an adiabatic change.

In our case the system is a fluid element which is not in equilibrium but in motion
with flow velocity u. We must be careful, therefore, to separate the work that goes
into changing the kinetic energy of the flow from that which increases the internal
energy. The former is obtained by taking the scalar product of u with the equation
of motion (3.10) from which we get

D(u2
i /2)

Dt
= ui Fi + ui

ρ

∂�i j

∂r j
(3.18)

Now the total work done on the fluid element due to the body forces is
∫
δτ
ρu ·F dτ

and ∫
δS

u ·��� · n dS =
∫
δτ

∇ · (u ·���) dτ (3.19)

due to the surface forces. Hence the rate of work per unit mass is

ui Fi + 1

ρ

∂(ui�i j )

∂r j
= ui Fi + ui

ρ

∂�i j

∂r j
+ �i j

ρ

∂ui

∂r j
(3.20)

Comparing the total rate of work per unit mass (3.20) with the rate of change of
kinetic energy per unit mass (3.18), we see that the rate of work expended on the
internal energy per unit mass is just the last term in (3.20); that is

DW

Dt
= �i j

ρ

∂ui

∂r j
= 1

ρ
��� : ∇u (3.21)

in dyadic notation.
The heat energy arises from two sources. There is both Joule heating∫

δτ
( j2/σ) dτ , where j is the current density and σ the electrical conductivity, and

heat conduction through the surface of the fluid element given by∫
δS
κ∇T · n dS =

∫
δτ

∇ · (κ∇T )dτ (3.22)

where κ is the coefficient of heat conduction. Thus the rate of change of heat per
unit mass is

DQ

Dt
= 1

ρσ
j2 + 1

ρ
∇ · (κ∇T ) (3.23)

and from (3.17), (3.21) and (3.23) we get

DE
Dt

= 1

ρ
��� : ∇u + 1

ρ
∇ · (κ∇T )+ 1

ρσ
j2 (3.24)
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It is assumed that the transport coefficients µ, κ, σ are known functions of the
state variables ρ and T so it remains only to specify the equations of state for T
and E . These follow from the assumption that the plasma behaves like a perfect
gas.

In a perfect gas the total pressure and internal energy can be computed by adding
up all the contributions from the individual particles as if they were independent
of each other. In equilibrium it then follows that the contributions of the particles
to the pressure and the internal energy are both proportional to their mean square
velocities. In fact, the internal energy associated with each degree of freedom is
1
2 kBT where kB is Boltzmann’s constant and we find (see Section 12.5)

P = NkBT (3.25)

where N is the total number density of the particles. Since E is the internal energy
per unit mass it follows that the internal energy per unit volume is

ρE = s

2
NkBT = s

2
P (3.26)

where s is the number of degrees of freedom per particle. For a plasma, where the
particles are either ions or electrons, s = 3 corresponding to the three directions of
translational motion, but in order to obtain the general result we shall not make this
identification for the time being. Substitution of (3.26) in (3.24) gives, after some
straightforward manipulation using (3.7), (3.12) and (3.14),

D P

Dt
= −γ P∇ · u + (γ − 1)∇ · (κ∇T )

+ γ − 1

σ
j2 + (γ − 1)µ

(
∂ui

∂r j
+ ∂u j

∂ri
− 2

3
δi j∇ · u

)
∂ui

∂r j
(3.27)

where γ = (s + 2)/s is the ratio of the specific heats.
Since the total number density N is not one of our fluid variables we must re-

write the equation of state (3.25) in terms of ρ. For a plasma consisting of ions and
electrons with number densities, ni and ne, and charges, Ze and −e, respectively
we have

N = ni + ne ≈ ni(1 + Z) (3.28)

and

ρ = m ini + mene ≈ m ini (3.29)

where the first approximation follows from the quasi-neutrality condition ne ≈ Zni

and the second from the strong inequality of the masses m i 
 Zme. Then using
(3.28) and (3.29) we write (3.25) as

P = R0ρT (3.30)
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where

R0 = NkB

ρ
≈ (1 + Z)kB

m i
(3.31)

is the gas constant.
Summarizing, the set of fluid equations comprises the continuity equation (3.7)

for ρ, the equation of motion (3.15) for u, the energy equation (3.27) for P and
the equation of state (3.30) for T ; it is assumed that the transport coefficients µ, κ
and σ are given functions of ρ and T though in practice they are often treated as
constants.

3.3 The MHD equations

So far we have applied the arguments of classical fluid dynamics to obtain a closed
set of equations for the plasma fluid variables but, except for the introduction of
Joule heating, we have taken almost no account of the fact that a plasma is a
conducting fluid. This we do now by specifying the force per unit mass F. Except
in astrophysical contexts, where gravity is an important influence on the motion of
the plasma, electromagnetic forces are dominant. For a fluid element with charge
density q and current density j we then have

ρF = qE + j × B (3.32)

where the fields E and B are determined by Maxwell’s equations (2.2)–(2.5).
Equations (2.6) and (2.7) for q and j are not suitable in a fluid model. However,

our first objective is to obtain a macroscopic description of the plasma in which the
fields are those induced by the plasma motion. Thus, we now introduce the basic
assumption of MHD that the fields vary on the same time and length scales as the
plasma variables. If the frequency and wavenumber of the fields are ω and k respec-
tively, we have ωτH ∼ 1 and kLH ∼ 1, where τH and LH are the hydrodynamic time
and length scales. A dimensional analysis then shows (see Exercise 3.5) that both
the electrostatic force qE and displacement current ε0µ0∂E/∂t may be neglected
in the non-relativistic approximation ω/k � c. Consequently, (3.32) becomes

ρF = j × B (3.33)

and (2.3) is replaced by Ampère’s law

j = 1

µ0
∇ × B (3.34)

Now, Poisson’s equation (2.4) is redundant (except for determining q) and just one
further equation for j is required to close the set.



3.3 The MHD equations 59

Here we run into the main problem with a one-fluid model. Clearly, a current
exists only if the ions and electrons have distinct flow velocities and so, at least to
this extent, we are forced to recognize that we have two fluids rather than one. For
the moment we side-step this difficulty by following usual practice in MHD and
adopting Ohm’s law

j = σ(E + u × B) (3.35)

as the extra equation for j. The usual argument for this particular form of Ohm’s
law is that in the non-relativistic approximation the electric field in the frame of a
fluid element moving with velocity u is (E + u × B). However, this argument is
over-simplified, unless u is constant so that the frame is inertial, and later, when we
discuss the applicability of the MHD equations, we shall see that the assumption
of a scalar conductivity in magnetized plasmas is rarely justified. The status of
(3.35) should be regarded, therefore, as that of a ‘model’ equation, adopted for
mathematical simplicity.

This closes the set of equations for the variables ρ, u, P, T,E,B and j but before
listing them it is useful to reduce the set by eliminating some of the variables.
Although in electrodynamics it is customary to think of the magnetic field being
generated by the current, in MHD we regard Ampère’s law (3.34) as determining j
in terms of B. Then Ohm’s law (3.35) becomes

E = 1

σµ0
∇ × B − u × B (3.36)

so determining E. Finally, substituting (3.36) in (2.2), treating σ as a constant, and
using (2.5), we get the induction equation for B

∂B
∂t

= 1

σµ0
∇2B + ∇ × (u × B) (3.37)

Since we have eliminated j and E, this is now the only equation we need add to the
set derived at the end of the last section for the fluid variables.

3.3.1 Resistive MHD

Although we have a closed set of equations it is still too complicated for gen-
eral application and some further reduction is essential. In fact, there is a natural
reduction consistent with the assumptions already made. In a collision-dominated
plasma the electron and ion distribution functions remain close to local Maxwellian
distributions. These are the ‘quasi-static equilibrium states’ through which the
plasma was assumed to pass when we invoked thermodynamics in Section 3.2.
A plasma with local Maxwellian distribution functions has zero viscosity and heat
conduction so it follows that these terms in the momentum and energy equations
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Table 3.1. Resistive MHD equations

Evolution equations:

Dρ/Dt = −ρ∇ · u
ρDu/Dt = (∇ × B)× B/µ0 − ∇P
D P/Dt = −γ P∇ · u + (γ − 1)(∇ × B)2/σµ2

0
∂B/∂t = ∇2B/σµ0 + ∇ × (u × B)

Equation of state:

T = P/R0ρ

Equation of constraint:

∇ · B = 0

Definitions:
E = (∇ × B)/σµ0 − u × B
j = (∇ × B)/µ0
q = −ε0∇ · (u × B)

Approximations:
Strong collisions: τi � (me/mi)

1/2τH λc � LH
Non-relativistic: ω/k ∼ LH/τH ∼ u � c
Quasi-neutrality: ω|�e|/ω2

p � 1
Small Larmor radius: rLi � LH

Scalar conductivity: |�e| � νc

are small in some sense yet to be clarified. Neglecting these terms leaves electrical
resistivity as the only remaining dissipative mechanism and so the reduced set of
equations describes resistive MHD. These equations are listed in Table 3.1. The
approximations on which the resistive MHD equations are based are discussed
below in Section 3.4.

3.3.2 Ideal MHD

Going one step further and neglecting all dissipation leads to ideal MHD. This is
sometimes referred to as the infinite conductivity limit, but since that is the same
as the limit of no collisions we would be in danger of employing contradictory
arguments in our derivation. The proper approach comes from a dimensional anal-
ysis of the two terms on the right-hand side of (3.37). We see that the ratio of the
convective term to the diffusion term is

σµ0|∇ × (u × B)|
|∇2B| ∼ µ0σuLH ≡ RM (3.38)



3.4 Applicability of the MHD equations 61

where RM is called the magnetic Reynolds number by analogy with the hydrody-
namic Reynolds number R which measures the relative magnitude of the inertial,
convective term to the diffusion term in the Navier–Stokes equation (3.16):

ρ|Du/Dt |
µ|∇2u| ∼ ρL2

H

µτH
∼ ρuLH

µ
= R (3.39)

In RM the resistivity σ−1 plays the role of the kinematic viscosity (µ/ρ) in R.
We see from (3.38) and (3.39) that ideal MHD corresponds to the limit of infinite
Reynolds numbers and that both these limits can be achieved consistently by letting
LH → ∞; ideal MHD is therefore properly regarded as the limit of large scale
length.

Comparing the two terms on the right-hand side of the pressure evolution equa-
tion (see Table 3.1) we have

|∇ × B|2
µ2

0σ P|∇ · u| ∼ 1

βRM
(3.40)

where β = µ0 P/B2 is the ratio of plasma pressure to magnetic pressure. This
confirms that the RM → ∞ limit removes the dissipative term from this equation
as well so that it reduces to

D P

Dt
= −γ P∇ · u (3.41)

On substituting for ∇ · u from the continuity equation, (3.41) becomes

D P

Dt
− γ P

ρ

Dρ

Dt
= 1

ργ

D

Dt
(Pρ−γ ) = 0 (3.42)

and hence, for any fluid element,

Pρ−γ = const. (3.43)

which is the adiabatic gas law. The ideal MHD equations and the approximations
governing their validity (discussed in the following section) are listed in Table 3.2.

3.4 Applicability of the MHD equations

Magnetohydrodynamics, especially ideal MHD, is widely employed throughout
plasma physics, on occasions it has to be said, with scant regard to its range of
validity. A mathematically rigorous discussion of validity requires the two-fluid
approach of Chapter 12 but we can gain considerable insight into the applicability
and the likely limitations of the MHD equations by plausible physical arguments
such as we have used in their derivation. We do this by taking in turn each of the

Igor A. Kotelnikov
Highlight
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Table 3.2. Ideal MHD equations

Evolution equations:

Dρ/Dt = −ρ∇ · u
ρDu/Dt = (∇ × B)× B/µ0 − ∇P

D(Pρ−γ )/Dt = 0
∂B/∂t = ∇ × (u × B)

Equation of constraint:

∇ · B = 0

Definitions:
E = −u × B
j = (∇ × B)/µ0
q = −ε0∇ · (u × B)

Approximations:
Strong collisions: τi � (me/mi)

1/2 τH λc � LH
Non-relativistic: ω/k ∼ LH/τH ∼ u � c
Quasi-neutrality: ω|�e|/ω2

p � 1
Small Larmor radius: rLi/LH � β1/2

Large RM:
(
rLi/LH

)2 � β (mi/me)
1/2 (τi/τH)

assumptions made in the derivation of the equations, identifying the underlying
approximation, and writing it in terms of a dimensionless parameter.

Since classical thermodynamics assumes the establishment of quasi-static equi-
librium states (local Maxwellians) and these are brought about by collisions we
require the collision time τc � τH. Let us now be more precise about what we
mean by this strong inequality. For τH we take the minimum hydrodynamic time
scale of interest, i.e. the time for significant change in the most rapidly fluctuating
of the macroscopic variables. The ion and electron collision times, τi and τe, are
defined as the times for significant particle deflection (momentum change). Since
ions are effective in deflecting both other ions and electrons we may, for order of
magnitude arguments, consider only the scattering off ions. For low Z and Ti ≈ Te

it then follows that the collision time for each species is inversely proportional to
its thermal speed and hence τi ∼ (m i/me)

1/2τe. Thus, both ions and electrons will
be in local equilibrium states provided

τi � τH (3.44)

However, a one-fluid model naturally assumes a single temperature and this im-
poses an even stronger collisionality condition. Temperature equilibration depends
on energy exchange between ions and electrons and since the energy exchange per
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collision is proportional to me/m i it follows that initially different temperatures
will be approximately equal after a time (m i/me)τe. We must, therefore, replace
(3.44) by the stronger collisionality condition

τi � (me/m i)
1/2τH (3.45)

Here it is worth noting that although, in the two-fluid model of Chapter 12, tem-
perature equilibration is assumed to take place on the hydrodynamic time scale so
that (3.44) suffices, one then has separate ion and electron energy equations. There
is no inconsistency however because contact between the two-fluid and one-fluid
models is established with the derivation of the resistive MHD equations and, as we
shall see, (3.45) reappears as the condition for the neglect of heat conduction. This
confirms that it is in order to impose the stronger collisionality condition (3.45) for
the one-fluid model.

In terms of scale lengths we require the mean free paths of the ions and electrons
to be very small compared with LH. Here there is no ambiguity because the mean
free path λc is the product of the thermal speed and the collision time and so has
the same order of magnitude for ions and electrons. The inequality

λc � LH (3.46)

then enables us to define a fluid element of dimension (δτ )1/3 such that

N−1/3 � λc < (δτ)1/3 � LH (3.47)

where N−1/3 is the mean interparticle separation. For plasmas with many particles
in the Debye sphere, i.e. Nλ3

D 
 1, the first inequality in (3.47) is satisfied since
N 1/3λc ∼ (Nλ3

D)
4/3/ ln(Nλ3

D) 
 1. Thus, a fluid element with dimensions of
several mean free paths will retain its identity on account of collisions; it will not
be sensitive to microscopic fluctuations because it contains many particles, and the
variation of macroscopic quantities within it will be negligible. Approximations
(3.45) and (3.47) underlie the derivation of the fluid equations.

The neglect of electrostatic forces and the displacement current in the electro-
magnetic equations was a consequence of the basic assumption of MHD that the
fields and flow are strongly correlated and therefore change on the same scales;
furthermore the flow, being dominated by ion inertia is non-relativistic:

ω

k
∼ LH

τH
∼ u � c (3.48)

Here, for future reference, we note that the adoption of this approximation marks a
fundamental difference between MHD and the plasma wave equations where wave
and electron speeds may be relativistic.
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So far all of these approximations were mentioned, if not spelled out precisely,
in the course of the derivation of the MHD equations. Those we consider next were
not identified on account of adopting an empirical Ohm’s law (3.35). The statement
that the electric field in the frame of the fluid element is (E + u × B) skips over the
fact that j must also be transformed and the further complication that in general the
fluid element is not an inertial frame. A rigorous derivation of (3.35) for a moving
deformable conductor can be found in Jeffrey (1966) assuming the approximation†

ε0

σ
� τH

which is easily satisfied in almost all plasmas. However, we shall not reproduce this
derivation since it starts from the scalar relationship j = σE and for a magnetized
plasma we cannot assume a scalar conductivity. The correct relationship between
current and fields is given by the generalized Ohm’s law, the derivation of which
requires the two-fluid approach of Chapter 12 rather than the one-fluid model used
here. Nevertheless, there is a simple argument leading to the generalized Ohm’s
law which is appropriate in the MHD approximation and sufficient to enable us to
identify the further approximations required to obtain (3.35).

The argument is based on the strong inequality of the masses, Zme � m i, and
quasi-neutrality, Zni ≈ ne, the condition for the latter being

|q|
ene

∼ ε0|∇ · E|
ene

∼ ω|�e|
ω2

p

� 1 (3.49)

where �e is the electron Larmor frequency, ωp is the plasma frequency and we
have used (2.4) to estimate |q| and (2.2) to estimate |E|. A consequence of the
mass inequality is that the flow velocity is determined by the much heavier ions
but within the fluid element the forces acting on the more mobile electrons may
produce an electron flow velocity which is different from that of the ions, so giving
rise to a current. Thus,

u ≈ ui j = Zeniui − eneue ≈ Zeρ

m i
(u − ue) (3.50)

from which we see that fluctuations in ue occur on the same scales as those in
ρ, u and j, i.e. the hydrodynamic scales τH and LH. In writing an equation of
motion for ue, therefore, we may ignore electron inertia and viscosity, since they
involve derivatives of ue, but we must include a term to account for the collisional
interaction with the ions; we take this to be proportional to the product of the
collision frequency νc = τ−1

e and the electron momentum per unit volume relative

† This ensures that any net space charge decays away in a time much shorter than τH so that the only electric
fields present are those generated by the action of the magnetic field.
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to the ions. The balance of forces on the electrons is then given by

ene(E + ue × B)+ meneνc(ue − ui)+ ∇pe = 0 (3.51)

where pe is the electron pressure. Substituting for ue and ui from (3.50) we get

E + u × B − j/σ = m i

Zeρ
(j × B − ∇pe) (3.52)

where we have identified Ze2ρ/m imeνc ≈ nee2/meνc = σ as the coefficient of
electrical conductivity. Equation (3.52) is the MHD form of the generalized Ohm’s
law which is discussed further in Section 3.5.1. It reduces to (3.35) if we ignore
the terms on the right-hand side. To understand the significance of neglecting these
terms, it is instructive to re-write (3.52) as

j + |�e|
νc

(j × b) = σ Ẽ (3.53)

where b is a unit vector parallel to B and

Ẽ = E + u × B + m i

Zeρ
∇pe

is the ‘effective’ electric field. This representation quite clearly shows the distinc-
tive roles of the ∇pe and j × B terms.

The ∇pe term may be treated as an extra component in the effective electric
field and, comparing it with the Lorentz force u × B we have

m i|∇pe|
Zeρ|u × B| ∼

(
rLi

LH

)(cs

u

)(Te

Ti

)1/2

where rLi is the ion Larmor radius and cs = (kBTe/m i)
1/2 is the ion acoustic

speed. Since we have taken Te ≈ Ti, we see that neglect of the ∇pe term re-
quires (rLi/LH) � (u/cs). From the momentum equation |u| ∼ cs if β � 1 and
|u| ∼ cs/β

1/2 if β � 1 so the small Larmor radius condition

rLi � LH (3.54)

covers both cases.
In contrast, the role of the j × B term is far more fundamental since its presence

means that there is no scalar relationship between j and Ẽ; there must be a compo-
nent of Ẽ which is perpendicular to j (and B) to balance the j × b term. This is the
Hall effect. The condition for the recovery of a scalar conductivity is clearly

|�e| � νc (3.55)
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This condition may be satisfied for certain conducting materials but is seldom true
for magnetized plasmas, particularly fusion and space plasmas; hence the state-
ment following (3.35) that the scalar Ohm’s law is a model equation adopted for
mathematical simplicity.

In summary, the conditions for the applicability of the dissipative MHD equa-
tions are (3.45)–(3.49) and (3.54)–(3.55). As well as the last of these, the first
is often not satisfied and we return to this point below but, for the moment, we
continue the analysis by showing that these approximations are also the basis for
the resistive MHD equations.

Clearly, the condition for the neglect of viscosity in the momentum equation, as
in ideal MHD, is R 
 1. Noting that the viscosity coefficient µ ∼ Pτi, this condi-
tion may be expressed as R−1 ∼ (µ/ρuLH) ∼ (Pτi/ρuLH) ∼ (cs/u)(λc/LH) �
1 which is satisfied provided (3.46) holds. The same approximation justifies ne-
glecting viscosity in the energy equation (3.27), as may be seen by comparison
with the pressure terms (µu2τH/L2

H P ∼ λc/LH).
Since the coefficient of thermal conductivity κ ∼ nk2

BT τe/me, comparison of
the thermal conduction term in (3.27) with the pressure term gives

|∇ · (κ∇T )|
|P∇ · u| ∼

(
m i

me

)1/2
τi

τH

(cs

u

)2
∼
(

m i

me

)1/2
τi

τH
β (3.56)

showing that thermal conductivity may be neglected if (3.45) is satisfied. Thus, no
new approximations are required for resistive MHD. By contrast, ideal MHD does
require the additional approximation RM 
 1 (or RM 
 β−1 if β � 1; see (3.40)).
However, the condition for the neglect of the Hall current is no longer (3.55) since
this arose from a comparison of the two current terms in (3.53) both of which are
now neglected. A suitable approximation is provided by a comparison of the j × B
and u × B terms so that we now require

m i|j × B|
Zeρ|u × B| ∼ 1

β

(
rLi

LH

)(cs

u

)(Te

Ti

)1/2

� 1

For β ∼ 1 this is the same condition (3.54) as for the neglect of the ∇pe term. For
low β plasmas the somewhat stronger small Larmor radius approximation

rLi/LH � β1/2 (β � 1) (3.57)

is required.
For completeness let us write the large magnetic Reynolds number approxima-

tion in terms of τi and τH; using σ = nee2/meνc we have

R−1
M = (µ0σuLH)

−1 ∼ 1

β

(
rLi

LH

)2 (me

m i

)1/2 (
τH

τi

)
� 1
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Combining this with (3.45) we have

1

β

(
rLi

LH

)2

�
(

m i

me

)1/2 (
τi

τH

)
� 1 (3.58)

Apart from (3.47) to (3.49), which are fundamental to MHD and may therefore be
taken for granted, (3.58) summarizes the approximations of ideal MHD; the strong
inequalities involving (rLi/LH) represent the large scale length (high conductivity)
and small ion Larmor radius approximations, while the final inequality represents
the high collisionality approximation. It is this last approximation that is least likely
to be valid for fusion and space plasmas which are usually better described as
collisionless rather than collision-dominated. Despite this, a fluid description of
the plasma in these circumstances may still be tenable though some re-examination
of the model, particularly of the energy equation, is required. It turns out that the
magnetic field, by acting as a localizing agent, is able to compensate in part for
insufficient collisionality. However, discussion of this requires a proper recognition
of the anisotropic nature of a magnetized plasma.

3.4.1 Anisotropic plasmas

Since a magnetized plasma has a natural preferred direction the assumption of
isotropic pressure cannot strictly be justified. This point is relevant when the mag-
netic field is sufficiently strong (or collisions sufficiently weak) so that

rLi � λc (3.59)

Consequently, in the plane perpendicular to the magnetic field it is the Larmor
orbits rather than collisions that restrict the free flow of the particles. It then may
happen that, instead of (3.11), the equilibrium stress tensor takes the form

��� = −

 P⊥ 0 0

0 P⊥ 0
0 0 P‖


 (3.60)

with different components parallel and perpendicular to the field. In ideal MHD
one then obtains, instead of the adiabatic gas law (3.42), two separate adiabatic
conditions called the double adiabatic approximation.

We can see roughly how this comes about by returning to (3.24) and (3.26) and
splitting them into two pairs of equations for separate internal energy components
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E‖ and E⊥. Dropping all the dissipative terms and using (3.60) we write (3.24) as

DE‖
Dt

= − P‖
ρ

∂u3

∂r3
(3.61)

DE⊥
Dt

= − P⊥
ρ

(
∇ · u − ∂u3

∂r3

)
(3.62)

and from (3.26) we substitute

ρE‖ = P‖/2 (3.63)

ρE⊥ = P⊥ (3.64)

An equation for ∂u3/∂r3 is obtained from the parallel component of the magnetic
convection equation on expanding the right-hand side and using (2.5) to get

∂B

∂t
+ (u · ∇)B = B

∂u3

∂r3
− B∇ · u (3.65)

Substituting for ∂u3/∂r3 from (3.65) and, as before, for ∇ · u from the continuity
equation, it is easily verified that (3.61) and (3.62) become

D

Dt

(
P‖ B2

ρ3

)
= 0 (3.66)

and
D

Dt

(
P⊥
ρB

)
= 0 (3.67)

which are the double adiabatic conditions replacing (3.42) when the pressure is
anisotropic.

An interesting parallel may be drawn between the double adiabatic conditions
and the adiabatic invariants µB and J of particle orbit theory. Since µB = mv2

⊥/2B
and P⊥/ρ ∝ 〈v2

⊥/2〉, where the bracket denotes an average over all the particles
in the fluid element, we may regard (3.67) as a macroscopic representation of the
invariance of µB. Likewise, treating the fluid element as a flux tube and using
a well-known result of ideal MHD that the length of a flux tube l ∝ B/ρ (see
Section 4.2), we have

P‖ B2

ρ3
∝ 〈v2

‖〉l2 ∝ J 2

so that (3.66) becomes a statement of the invariance of J . These insights go some
way towards explaining why ideal MHD can be applied with success even in the
collisionless regime. However, they are not rigorous and uncritical use of MHD be-
yond the validity of its approximations can lead to erroneous results, as illustrated
by Kulsrud (1983).
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The role of collisions in MHD is twofold; they not only establish the quasi-static
local equilibrium state but serve to define the dimensions of the fluid element. In the
collisionless limit the adiabatic invariants describe the plasma locally and the ion
Larmor radius defines the perpendicular dimension of the fluid element provided
(3.54) is valid, a condition well satisfied in almost all magnetized plasmas. The
outstanding problem is the definition of the parallel dimension of the fluid element
since, in the collisionless limit, particles may flow freely along the field lines. In
particular, there must be negligible heat flow from one fluid element to another
and since the heat conduction coefficient parallel to B increases with the collision
time a negligible parallel temperature gradient is required. This imposes a severe
restriction on the applicability of double adiabatic theory.

3.4.2 Collisionless MHD

One way to get around the problem of establishing a fluid description for the par-
allel flow in the collisionless limit is to use a one-dimensional kinetic equation to
describe v‖-dependent plasma behaviour. This is done in the guiding centre plasma
model (Grad, 1967) but it is considerably more complicated than either ideal MHD
or double adiabatic theory and we shall not discuss it here.

With the objective of finding a simpler theory applicable to fusion plasmas,
Freidberg (1987) proposed an alternative fluid model which he called collisionless
MHD. This model is worthy of consideration not only because it confronts the
problem that the strong collisions condition (3.45) is satisfied in neither fusion nor
space plasmas but also because it provides a link between the fluid description
and particle orbit theory as developed in Chapter 2. Indeed, it is the relationship
between particle drifts and plasma currents that is the key to establishing the
collisionless MHD equations in the plane perpendicular to the magnetic field.

The first step is to write the velocity v of a particle as

v = v‖b + v⊥ + vg

where the perpendicular component has been separated into its rapidly changing
gyration around the field line and its slowly changing guiding centre velocity. Next
we express vg in terms of all its possible components, evaluated in Chapter 2,

vg = vE + vG + vC + vP

where vE, vG, vC and vP are given by (2.16), (2.22), (2.23) and (2.49), respectively.
We note that, in the MHD approximation (3.48), vE is of higher order than each
of the other terms and since it is the same for both ions and electrons and is
independent of v we see that to a first approximation the plasma flow velocity
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is

u = E × B/B2

On taking the cross product of this equation with B we get

E⊥ + u × B = 0

the perpendicular component of Ohm’s law in ideal MHD.
Now, calculating the guiding centre current jg by summing over all the individual

particle contributions as in Chapter 2 we find

jg = 1

B
b ×

(
P⊥

∇B

B
+ P‖(b · ∇)b)+ ρ

du⊥
dt

)

where, as appropriate in a fluid model, we have identified the partial pressures P⊥
and P‖ with nW̄⊥ and 2nW̄‖, respectively. This correspondence has already been
noted in the preceding section.

To this guiding centre current we must add the magnetization current jM =
∇ × M, where M = −(P⊥/B)b so that the current density perpendicular to the
magnetic field is

j⊥ = jg + jM

The cross product of this equation with B then gives the perpendicular momentum
equation

ρ

(
b × du⊥

dt

)
× b = j × B − ∇⊥ P⊥ − (P‖ − P⊥)(b · ∇)b (3.68)

This is the perpendicular momentum equation found from both the guiding cen-
tre plasma model and the double adiabatic theory of Chew, Goldberger and Low
(1956).

Freidberg replaced the parallel momentum equation by the heuristic assumption
of incompressibility, ∇ · u = 0, which implies that the density and pressures are
convected with the plasma. The main role of the ‘parallel’ equations is to describe
the propagation of sound waves along the field lines. But these waves do not couple
strongly with most ideal MHD instabilities which involve incompressible wave
motion. Thus, as Freidberg points out, for the most part the model is inaccurate
only where it does not matter and collisionless MHD should at least provide a
credible basis for the discussion of ideal MHD stability. If it is assumed that P⊥ =
P‖ then the equations and predictions of collisionless MHD and incompressible,
ideal MHD are virtually identical. Furthermore, in those situations where the two
models produce different predictions, neither model can be considered reliable. The
evolution equations and conditions governing collisionless MHD for P⊥ = P‖ = P
are set out in Table 3.3.
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Table 3.3. Collisionless MHD equations

Evolution equations:

Dρ/Dt = 0
ρ(Du⊥/Dt)⊥ = (∇ × B)× B/µ0 − ∇⊥ P

D P/Dt = 0
∂B/∂t = ∇ × (u × B)

Equations of constraint:

∇ · B = 0 ∇ · u = 0

Definitions:
E = −u × B
j = (∇ × B)/µ0
q = −ε0∇ · (u × B)

Approximations:
Collisionless: τH � τi LH � λc

Non-relativistic: ω/k ∼ LH/τH ∼ u � c
Quasi-neutrality: ω|�e|/ω2

p � 1
Small Larmor radius: rLi/LH � β1/2

3.5 Plasma wave equations

The interaction of plasma and electromagnetic fields generates a very wide spec-
trum of wave phenomena of which only the low frequency limit is described by
MHD. A fluid description of plasma wave propagation is feasible but cannot be
derived from a collision-dominated model since most wave frequencies are greater
than collision frequencies. Also, such a description must be two-fluid since much
of the physics is related to the differences in ion and electron motion.

Neighbouring particles of a given species will tend to move coherently in re-
sponse to the fields but disperse on account of their random, thermal velocities.
The persistence of a fluid element depends, therefore, on the dominance of the first
effect over the second and we can express this in terms of a strong inequality by
requiring the distance moved by a particle on account of its thermal speed Vth in
one wave period to be much less than the wavelength of the field fluctuations

2π

ω
Vth � λ

or

Vth � ω

k
= vp (3.69)
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Table 3.4. Cold plasma wave equations

Wave equations:

∂nα/∂t + ∇ · (nαuα) = 0
mαnα(∂/∂t + uα · ∇)uα = eαnα(E + uα × B)

Maxwell equations:
∇ × E = −∂B/∂t
∇ × B = ε0µ0∂E/∂t + µ0j
∇ · E = q/ε0
∇ · B = 0

Approximations:
Cold plasma: Vth � ω/k = vp
Collisionless: νc � ω

where vp is the phase velocity of the wave. This is the cold plasma approximation
and in the limit Vth/vp → 0 the fluid description is exact for a collisionless plasma
since, at any given point in the plasma, the velocity of all the particles of a given
species is uniquely determined by the species flow velocity uα and the forces acting
on the particles are given by the fields at that point. Thus, the cold plasma wave
equations are simply the (separate) ion and electron continuity equations and equa-
tions of motion. In the latter the electric field is retained because the non-relativistic
approximation (vp � c) is not assumed and the fields E and B are determined by
the full Maxwell equations, i.e. the displacement current is retained. The equations
are listed in Table 3.4.

The cold plasma wave equations provide a very good description of wave
phenomena in collisionless plasmas, especially at the high frequency end of the
spectrum. However, they inevitably become invalid at wave resonances where
k → ∞. The effects of finite temperature may be investigated by introducing
pressure gradients into the equations of motion and adding the adiabatic equations
of state to determine the isotropic (or anisotropic) pressures. These are the warm
plasma wave equations which, for the case of isotropic pressures, are listed in
Table 3.5. In the adiabatic equations ρα = mαnα and we have allowed for distinct
ratios of the specific heats. The warm plasma wave equations are model equations
for they have no rigorous derivation and, as discussed later, the fluid model omits
important kinetic effects like Landau damping. Nevertheless, they provide a simple
description of finite temperature modifications of cold plasma waves and of the
further fluid modes which propagate in a warm plasma but disappear in the cold
plasma limit.
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Table 3.5. Warm plasma wave equations

Wave equations:

∂nα/∂t + ∇ · (nαuα) = 0
mαnα(∂/∂t + uα · ∇)uα = eαnα(E + uα × B)− ∇pα

D(pαρ
−γα
α )/Dt = 0

Maxwell equations:
∇ × E = −∂B/∂t
∇ × B = ε0µ0∂E/∂t + µ0j
∇ · E = q/ε0
∇ · B = 0

Collisionless approximation: νc � ω

3.5.1 Generalized Ohm’s law

For warm plasma waves it is sometimes necessary to include in the equations of
motion a term to represent the exchange of momentum between species. As in
Section 3.4 (see (3.51)), we write the rate of flow of momentum from electrons to
ions as meneνc(ue − ui). Using the approximations (3.50) and ignoring quadratic
terms (uα · ∇)uα it is then straightforward (see Exercise 3.6) to combine the
equations of motion to obtain a generalized Ohm’s law in the form

E + u × B − j/σ − 1

σνc

∂j
∂t

= m i

Zeρ
(j × B − ∇pe) (3.70)

This differs from (3.52) through the additional ∂j/∂t term which is negligible in
the MHD approximation because j is assumed to vary on the hydrodynamic time
scale and νcτH 
 1. In the warm plasma wave equations, j and ue may vary
on a collision time scale and it is easily verified that inserting the inertial term
mene∂ue/∂t in (3.51) and using (3.50) yields (3.70).

Neither derivation of the generalized Ohm’s law presented in this chapter is
mathematically rigorous. However, as discussed in Section 12.6.2, Balescu (1988)
has shown that in the MHD approximation the effect of the inertial terms is tran-
sient and dies out after a few collision times so that the MHD version of the
generalized Ohm’s law (3.52) can be rigorously derived. On the other hand, there
is no rigorous derivation of (3.70) and this form of the generalized Ohm’s law, like
the warm plasma wave equations and the scalar Ohm’s law (3.35), has the status of
a model equation.
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3.6 Boundary conditions

In problems where the plasma may be treated as infinite the boundary conditions
take the simple form of prescribed values at infinity and perhaps at certain internal
points. More realistically, they are conditions to be satisfied by the solutions ob-
tained in different regions on the boundary between them. Typically, a plasma may
be surrounded by a vacuum and the boundary conditions, applied at the plasma–
vacuum interface, relate the solution of the fluid and field equations in the plasma
to the solution of the field equations in the vacuum; the vacuum may extend to
infinity or be surrounded by a wall and further appropriate boundary conditions are
applied to the vacuum fields.

Although in reality all variables change continuously across boundaries they of-
ten do so very rapidly and it is convenient to treat the boundary as an infinitesimally
thin surface across which discontinuous changes take place. Differential equations
become invalid when the variables or their derivatives are discontinuous but by
integrating the equations over an infinitesimal volume or surface which straddles
the boundary we derive conditions which relate the values of the variables on either
side of the boundary in terms of some surface quantity. The electromagnetic bound-
ary conditions are a familiar example of this procedure. Provided that there are
only volume distributions of current and charge the field variables are continuous
across the boundary between two media. However, if either medium is a conduc-
tor containing a surface current or charge, then the tangential component of the
magnetic field and the normal component of the electric field suffer discontinuities
determined by the surface current and charge respectively.

In ideal MHD there is no space charge and therefore no surface charge. On the
other hand, the thickness of the skin current in a good conductor decreases as the
conductivity increases and, in the ideal MHD limit, such currents become surface
currents flowing in a skin of infinitesimal thickness. Here, since E is determined by
Ohm’s law, we are concerned with the boundary conditions on B. As in electromag-
netism these are obtained by integrating ∇ · B = 0 and Ampère’s law over a small
cylindrical volume and rectangular surface, respectively, leading to the well-known
results (see Fig. 3.3 and Exercise 3.7)

[n · B]2
1 = 0 (3.71)

[n × B]2
1 = µ0Js (3.72)

where n is the unit vector normal to the boundary surface from side 1 to side 2,
[X ]2

1 = X2 − X1 is the change in X across the surface, and Js is the surface current.
Another important boundary condition at a plasma–vacuum surface in ideal

MHD is obtained by applying the same procedure used to obtain (3.71) to the
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Fig. 3.3. Boundary volume and surface integrals.

momentum equation. In the next chapter we show that this equation may be written

ρ
Du
Dt

= −∇ ·
[(

P + B2

2µ0

)
I − BB

µ0

]
where I is the unit dyadic. Integrating this equation over the volume of the infinites-
imal cylinder whose ends are either side of the boundary surface as shown in Fig.
3.3(a) and using Gauss’ theorem gives∫

V
ρ

Du
Dt

dV =
∫

S

[(
P + B2

2µ0

)
n − (B · n)B

]
dS

where V is the volume of the cylinder and S is its surface. As the length, l, of the
cylinder tends to zero the contribution to the surface integral from the curved sur-
face vanishes leaving only the normal contribution from either side of the boundary.
Further, since the plasma is a perfect conductor, there is no normal component of B
at the surface and so the second term in the square bracket also vanishes as l → 0.
Finally, since the acceleration of the plasma must remain finite, the volume integral
vanishes as l, and hence V , tends to zero. Thus,

[P + B2/2µ0]2
1 = 0 (3.73)

i.e. the total pressure (plasma plus magnetic) is continuous at the boundary. Of
course, if the plasma density ρ → 0 at the boundary then P → 0 and (3.73)
requires that the magnetic pressure be continuous. Since in this case there can be no
surface current, this is consistent with (3.71) and (3.72) expressing the continuity
of both normal and tangential components of B.

The vanishing of the normal component of B at the surface of a perfect conductor
also means that in ideal MHD, at a plasma–vacuum interface, (3.71) is replaced by
the stronger conditions

B · n = 0 = B̃ · n (3.74)

where B and B̃ are the plasma and vacuum fields, respectively.
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Exercises

3.1 In general the motion of a plasma is determined by the action of both
applied and induced fields. Under what circumstances is it necessary to
investigate plasma dynamics using fluid equations rather than particle orbit
theory?

What are the main features distinguishing the MHD and plasma wave
descriptions?

What is the essential difference between the hot and cold plasma wave
equations? State this in terms of a strong inequality.

3.2 What are the essential properties of a plasma fluid element and how may
they be expressed in terms of dimensionless parameters?

Why do short range inter-particle forces produce a net change in the
momentum of a fluid element only at its surface?

3.3 What is the assumption that allows us to use the thermodynamic equations
of state in MHD? Express this in terms of a strong inequality.

The first law of thermodynamics (3.17) relates the change in internal
energy of a plasma to the work done and heat exchange in effecting the
transition from one equilibrium state of the plasma to another. What is the
fundamental distinction between the state variable E and the path variables
W and Q? What defines an adiabatic change of state?

3.4 Carry out the steps indicated in the text to obtain (3.27) describing the
evolution of the plasma pressure. What is the physical significance of each
of the terms on the right-hand side of this equation?

3.5 By a dimensional analysis of the Maxwell equations, show that the dis-
placement current and the electrostatic force may be neglected in the non-
relativistic approximation. What does this mean physically in terms of the
reaction of the plasma to the electrostatic field compared with its reaction
to the electromagnetic fields in MHD?

Verify your answer by showing, from the equation of charge conserva-
tion and j = σE, that any net space charge will decay away in a time of
order ε0/σ .

Why, in general, is the non-relativistic approximation not adequate in
plasma wave theory?

3.6 Obtain (3.70) by combining the ion and electron equations of motion.
Show, also, that it may be derived by retaining the neglected electron
inertial term mene∂ue/∂t in (3.51) and substituting for ui and ue from
(3.50).

3.7 By integrating ∇ · B = 0 and Ampère’s law across the boundaries illus-
trated in Fig. 3.3 derive the boundary conditions (3.71) and (3.72).
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Ideal magnetohydrodynamics

4.1 Introduction

Ideal MHD is used to describe macroscopic behaviour across a wide range of
plasmas and in this chapter we consider some of the most important applications.
Being dissipationless the ideal MHD equations are conservative and this leads to
some powerful theorems and simple physical properties. We begin our discussion
by proving the most important theorem, due to Alfvén (1951), that the magnetic
field is ‘frozen’ into the plasma so that one carries the other along with it as it
moves. This kinematic effect arises entirely from the evolution equation for the
magnetic field and represents the conservation of magnetic flux through a fluid
element. Of course, any finite resistivity allows some slippage between plasma
and field lines but discussion of these effects entails non-ideal behaviour and is
postponed until the next chapter.

The concept of field lines frozen into the plasma leads to very useful analogies
which aid our understanding of the physics of ideal MHD. It also suggests that one
might be able to contain a thermonuclear plasma by suitably configured magnetic
fields, although research has shown that this is no easily attainable goal. Further,
since the ideal MHD equations are so much more amenable to mathematical analy-
sis they can be used to investigate realistic geometries. The theory has thereby pro-
vided a useful and surprisingly accurate description of the macroscopic behaviour
of fusion plasmas showing why certain field configurations are more favourable to
containment than others.

Notwithstanding the wide applicability of ideal MHD in space and laboratory
plasma physics a note of caution needs to be sounded over results derived from
it. Since the neglected dissipative terms are of higher differential order than the
non-dissipative terms, even a very small amount of dissipation can lead to solutions
which are significantly different from those of ideal MHD. Mathematically, higher
differential order means that singular perturbation theory must be used to examine

77
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the effects of dissipative terms and the ‘ideal’ solution cannot be recovered by tak-
ing the dissipative solution to an appropriate limit. This is illustrated in Exercise 4.1
where it is shown in a particular example that as one approaches the ideal limit of
no dissipation the effect of the dissipative terms is restricted to a narrow sheath
in which steepening gradients compensate for vanishing dissipative coefficients.
Generally, whilst an ideal MHD solution may be valid over most of a plasma
volume it cannot be entirely divorced from, and must be matched to, the non-ideal
solution at the boundary of such sheaths. Because of the steep gradients, often the
most interesting physics takes place in the sheath with dramatic consequences for
the whole plasma, as we shall discover in the next chapter.

4.2 Conservation relations

The basic physical properties of ideal MHD are related to the conservation of mass,
momentum, energy and magnetic flux, so it is helpful to write the fluid equations
in the form of conservation relations. The continuity equation

∂ρ

∂t
= −∇ · (ρu) (4.1)

is already in the required form, which is not surprising since it was derived by
expressing the conservation of mass in an arbitrary fixed volume within the plasma.

The equation expressing the conservation of momentum is obtained by taking
the partial time derivative of ρu and using the continuity and momentum equations
for ∂ρ/∂t and ∂u/∂t to get

∂(ρu)
∂t

= −∇ · (ρuu)− ∇P + 1

µ0
(∇ × B)× B

Now, using the vector identity (∇×B)×B = (B·∇)B−∇(B2/2) and ∇·(BB) =
B · ∇B this becomes

∂(ρu)
∂t

= −∇ · (ρuu + PI − T) = ∇ ·��� (4.2)

say. In (4.2) I is the unit dyadic and

T = 1

µ0
BB − B2

2µ0
I

is the Maxwell stress tensor, {ε0EE + BB/µ0 − 1
2(ε0 E2 + B2/µ0)I}, in the non-

relativistic limit, ε0µ0 E2/B2 � 1.
Similarly the equation of energy conservation follows from the partial time

derivative of the total energy density

U = 1

2
ρu2 + P

γ − 1
+ B2

2µ0
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comprising kinetic, internal, and magnetic energies, respectively. On using the
ideal MHD equations (Table 3.2) to evaluate the derivatives the result is

∂U

∂t
= −∇ · S (4.3)

where

S =
(

1

2
ρu2 + γ P

γ − 1

)
u + 1

µ0
B × (u × B)

is the total energy flux (see Exercise 4.2). Each of these conservation equations
expresses the time rate of change of the conserved quantity, at any given point
in the fluid, as the (negative) divergence of the corresponding flux at that point.
Integrating these equations over an arbitrary volume and using Gauss’ theorem
gives the rate of change of the conserved quantity within the volume in terms of
the flux through its surface.

It is less obvious that the evolution equation for the magnetic field is a conser-
vation equation but, in what has become known as the frozen flux theorem, Alfvén
showed that a consequence of

∂B
∂t

= ∇ × (u × B) (4.4)

is that the magnetic flux, through any surface S bounded by a closed contour C
moving with the fluid, is constant. From the two-dimensional extension of Leib-
nitz’s theorem (see (3.3) in Section 3.2) we have

d

dt

∫
S

B · dS =
∫

S

∂B
∂t

· dS +
∮

C
B · vC × dl (4.5)

so that in the case of a surface S whose boundary C is moving with the local flow
velocity u, as illustrated in Fig. 4.1, we have

D

Dt

∫
S

B · dS =
∫

S

∂B
∂t

· dS +
∮

C
B · u × dl (4.6)

where the first term on the right-hand side of (4.6) represents the change of flux due
to the time rate of change of B and the second term represents the change in the
surface area due to the movement of the bounding contour C (see Fig. 3.1(b)). Now
interchanging dot and cross in the triple scalar product and using Stokes’ theorem
to convert the line integral to a surface integral we see that

D

Dt

∫
S

B · dS =
∫

S

(
∂B
∂t

− ∇ × (u × B)
)

· dS = 0 (4.7)

on account of (4.4). Thus, the flux through a surface S moving with the fluid is
constant. Representing the flux through the surface S by the totality of the field
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u(r,t)

dl
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Fig. 4.1. Magnetic flux motion.

lines threading the loop C and bearing in mind that the theorem is true for arbitrary
C we see that the field lines are constrained to move with C , i.e. with the fluid.

Although not tangible physical quantities, ‘field lines’ and ‘flux tubes’ are help-
ful concepts for understanding the properties of magnetic fields. At every point,
whether in the fluid or in the vacuum, field lines follow the direction of the mag-
netic field and are, therefore, defined by the equations

dx

Bx
= dy

By
= dz

Bz

A magnetic (or flux) surface is one that is everywhere tangential to the field, i.e.
the normal to the surface is everywhere perpendicular to B, as shown in Fig. 4.2(a).
Figure 4.2(b) shows an open-ended cylindrical magnetic surface which defines a
flux tube and it is sometimes helpful to picture the density of the field lines through
the tube as a representation of the field strength; in other words, the number of field
lines threading the tube is proportional to the flux.

Clearly, the flux through a magnetic surface is zero and by the frozen flux
theorem must remain so if the surface moves with the fluid. Let us now imagine
a long thin fluid element which at any given moment lies along a flux tube. As it
moves, its cylindrical surface remains a magnetic surface and the flux through its
ends remains constant; hence the notion that the field lines are ‘frozen’ into the
fluid (see Fig. 4.2(c)).
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Fig. 4.2. Field lines and flux tubes.

Next we consider the distortion of a flux tube of initial cross-section dS0 and
length l0 as it moves with the fluid. Since the flux through the tube is constant a
motion which stretches the tube to length l > l0 and narrows its cross-section to
dS < dS0 will result in an increase in the field strength since B0 dS0 = B dS. As
the mass of the fluid is also conserved, i.e. ρ0 dS0 l0 = ρ dS l, we may divide these
equations to get the result

B0

ρ0l0
= B

ρl
(4.8)

For an incompressible fluid (ρ = const.) this becomes

B = (B0/ l0)l (4.9)

i.e. the field strength is proportional to the length of the flux tube; these results were
first noted by Walén (1946).

Flux conservation has a profound effect on the structure of the field. A fluid
element may change its shape but it does not break into separate pieces. The same
is true, therefore, of a flux tube with the result that the topology of the field cannot
change. This is a severe constraint since field configurations in which a lower
energy state could be arrived at by line breaking and reconnection are both easy
to imagine and to realize in practice. Such changes, which are forbidden in ideal
MHD by flux conservation, become possible with dissipation, however small, and
the consequences for plasma stability are dramatic, as we shall see in Chapter 5.
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4.3 Static equilibria

The fact that the field lines are frozen into a perfectly conducting fluid leads nat-
urally to the notion that by controlling the magnetic field configuration one might
be able to contain the fluid. For the high temperature plasmas needed for fusion
reactions this is a vital matter since contact between plasma and wall is likely to
be deleterious to both. We turn, therefore, to the momentum equation to examine
the effect of the field on the motion of the fluid but, because we wish to examine
possible equilibrium configurations, we begin with the specially simple case in
which the fluid is at rest.

For mathematical consistency this poses a problem for if u = 0 then RM = 0 and
ideal MHD is invalid! However, a dimensional analysis of the resistive MHD equa-
tions in Table 3.1 in this case shows that the pressure increases and the magnetic
field diffuses on a time scale that is proportional to the plasma conductivity σ . The
requirement, therefore, is that σ should be sufficiently large that this diffusion time,
τD∼µ0σ L2

H, is greater than any other time of interest. We assume that such times
as will arise, e.g. the time for the growth of instabilities (see Sections 4.5–4.7) or
the period of plasma waves (see Section 4.8), are less than τD. With this proviso
we may set u and all time derivatives equal to zero in the ideal MHD equations of
Table 3.2 to get

j × B = ∇P (4.10)

∇ · B = 0 (4.11)

j = 1

µ0
∇ × B (4.12)

If an equilibrium state is to be established the j×B force must balance the pressure
gradient and to investigate this it is convenient to use the static momentum equation
(4.10) in conservative form.

Defining the total stress tensor

Tik = [(P + B2/2µ0)δik − Bi Bk/µ0] (4.13)

(4.2) becomes
∂Tik

∂ri
= 0 (4.14)

The total stress tensor may be reduced to diagonal form by transformation to the
principal axes. The eigenvalues may be obtained from the secular equation

|Tik − δikλ| = 0

the solution being

λ1 = P + B2/2µ0 = λ2, λ3 = P − B2/2µ0
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Fig. 4.3. Total stress tensor relative to principal axes.

Thus, referred to the principal axes, Tik takes the form


 P + B2/2µ0 0 0

0 P + B2/2µ0 0
0 0 P − B2/2µ0




The principal axes are oriented so that the axis corresponding to λ3 is parallel
to B and the axes corresponding to λ1,λ2 are perpendicular to B. From this we
see that the stress caused by the magnetic field amounts to a pressure B2/2µ0 in
directions transverse to the field and a tension B2/2µ0 along the lines of force. In
other words, the total stress amounts to an isotropic pressure which is the sum of the
fluid pressure and the magnetic pressure B2/2µ0, and a tension B2/µ0 along the
lines of force. This is illustrated in Fig. 4.3. The ratio of fluid pressure to magnetic
pressure, 2µ0 P/B2, is an important parameter commonly denoted by β. In MHD,
it is often convenient to picture a tube of force behaving like an elastic string under
tension. Thus stretching the tube of force increases the tension, which means that
the field is increased as explained in the previous section.

From the equilibrium condition (4.10) it follows that

B · ∇P = 0 (4.15)
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∇P

Fig. 4.4. Nested isobaric surfaces.

and

j · ∇P = 0 (4.16)

This means that both B and j lie on surfaces of constant pressure so that the cur-
rent flows between magnetic surfaces. Supposing the constant pressure (isobaric)
surfaces to be closed, then, since (4.15) states that no magnetic field line passes
through the surface, one may picture the surface as made up from a winding of field
lines, i.e. the isobaric surfaces are also magnetic surfaces. Likewise, from (4.16)
the isobaric surfaces are made up from lines of current density; these lines will, in
general, intersect the field lines. The cross-section in Fig. 4.4 shows a set of nested
surfaces on which the pressure increases in passing from the outside towards the
axis; the currents are such that j × B points towards the axis. The implication here
is that a plasma may be contained entirely by the magnetic force, an arrangement
referred to as magnetic confinement.

An important integral relationship, known as the virial theorem, follows from
(4.14) and shows that such magnetic confinement cannot be achieved without the
aid of external currents. To demonstrate this we integrate the identity

∂

∂rk
(riTik) = rk

∂Tik

∂ri
+ Ti i

over an arbitrary volume V , bounded by a surface S. Then, since ∂Tik/∂ri = 0 for
equilibrium, on using Gauss’ theorem we get∫

(3P + B2/2µ0)dV =
∫

[(P + B2/2µ0)n · r − (B2/µ0)(r · b)(n · b)]dS

Now if the fields are due entirely to the plasma they must decrease as S → ∞
at least as fast as a dipole field (∝ r−3) so that the surface integral vanishes. The
volume integral, on the other hand, is positive definite and does not vanish, from
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which we conclude that we cannot set ∂Tik/∂ri = 0 and there is no equilibrium
without an externally applied field.

4.3.1 Cylindrical configurations

For simplicity let us first consider the radial equilibrium of cylindrical plasmas. We
assume cylindrical symmetry so that all variables are independent of θ and z and
the lines of j and B lie on surfaces of constant r . Then

µ0j =
[

0,−dBz(r)

dr
,

1

r

d

dr
(r Bθ (r))

]
(4.17)

and the radial component of (4.10) gives

d

dr
[P + (B2

θ + B2
z )/2µ0] = −B2

θ /µ0r (4.18)

which expresses the (radial force) balance between the total (gas and magnetic)
pressure gradient and the magnetic tension due to the curvature (if any) of the
magnetic field. Of course, it is possible to remove magnetic curvature by choosing
Bθ = 0 and then the gas and magnetic pressure gradients must be oppositely
directed and in balance. In this case, setting Bθ = 0 in (4.18) and integrating,
we have

P∗ ≡ P + B2/2µ0 = const. (4.19)

Such a field may be produced by currents flowing azimuthally; early devices de-
signed to contain plasma in this configuration were known as theta-pinches (since
θ is used to denote the azimuthal coordinate). Azimuthal currents are induced by
discharging a current suddenly in a metal conductor enclosing the discharge tube.
The induced currents flow in the opposite direction and an axial magnetic field is
generated in the region between. The j×B force acts to push the plasma towards the
axis until the external magnetic pressure is balanced by the (total) internal pressure;
from (4.19)

P(r)+ B2(r)/2µ0 = B2
0/2µ0 (4.20)

where B0 is the external magnetic field. Note that this means that the plasma acts
as a diamagnetic medium, B(r) < B0 (see Section 2.2.1). In the absence of any
initial magnetic field there is only the induced field which remains entirely outside
the plasma since it cannot penetrate in ideal MHD and (4.20) reduces to

P = B2
0/2µ0 (4.21)

i.e. the plasma is radially contained by the magnetic field generated by the az-
imuthal current flowing in its outer surface. If there is an internal magnetic field
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j

Fig. 4.5. Z-pinch configuration of axial current and azimuthal magnetic field.

B(r), the current penetrates the plasma and (4.20) applies. It is customary to define
the plasma β with respect to the external magnetic field, i.e. β(r) = 2µ0 P(r)/B2

0 ,
so that from (4.20)

β(r) = 1 − (B(r)/B0)
2

which may take any value in the range 0 < β < 1.
Another configuration which has been important for studying plasma contain-

ment is the Z-pinch. Here the j, B lines of the theta-pinch are interchanged so
that with j now axial and B azimuthal, the j × B force is again directed towards
the axis. Consider a fully ionized plasma contained in a cylindrical discharge tube
with a current flowing parallel to the axis of the tube, as shown in Fig. 4.5. Under
the action of the j × B force the plasma is squeezed or ‘pinched’ into a filament
along the axis of the tube. Since Bz = 0 the static condition (4.18) may be written

dP

dr
= − B

µ0r

d

dr
(r B) (4.22)

If the radius of the pinch is a, then multiplying (4.22) by r2 and integrating gives∫ a

0
r2 dP

dr
dr = − 1

µ0

∫ a

0
(r B) d(r B)

i.e.

(r2 P)r=a − 2
∫ a

0
r P dr = − 1

2µ0
(r B)2

r=a

If we suppose that the plasma pressure vanishes at r = a the first term vanishes
altogether and we get

2
∫ a

0
r P dr = 1

2µ0
(r B)2

r=a (4.23)
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Now from (4.17)

µ0 j = 1

r

d

dr
(r B) (4.24)

which integrates to give

(r B)r=a = µ0

∫ a

0
jr dr

and, on defining the total current I flowing in the plasma column by

I =
∫ a

0
2πr j dr (4.25)

we get

2
∫ a

0
r P dr = µ0 I 2

8π2

Assuming quasi-neutrality, Zni(r) = ne(r), and uniform ion and electron temper-
atures, we may substitute

P(r) = ni(r)kBTi + ne(r)kBTe = ne(r)kB(Te + Ti/Z) (4.26)

to obtain

I 2 = 8πkB(Te + Ti/Z)Ne/µ0 (4.27)

where

Ne =
∫ a

0
2πrne(r)dr (4.28)

is the number of electrons per unit length (electron line density) of the plasma
column. Equation (4.27), known as Bennett’s relation, determines the total current
required for containment of a plasma of specified temperature and line density.
(Note, however, that this analysis assumes a stable configuration; in fact, the Z -
pinch, as we shall see in Section 4.5.1, is highly unstable.)

A device in which the field lines wind around the axis in a helical path is called
a screw pinch. The rate at which the field lines rotate about the axis of the cylinder
is an important parameter for equilibrium and stability. Referring to Fig. 4.6, this
can be measured by dθ/dz and this in turn is determined from the equation for the
magnetic field lines

r dθ

dz
= Bθ (r)

Bz(r)



88 Ideal magnetohydrodynamics

z

r

B

d

dz

B

(a) (b)

θ

2πR 0

θ

Fig. 4.6. Screw pinch geometry.

The total angle of rotation for a cylinder of length 2πR0 (the one-dimensional
equivalent of a torus of major radius R0) is called the rotational transform and is
denoted by

ι(r) =
∫ 2πR0

0

(
dθ

dz

)
dz = 2πR0 Bθ (r)

r Bz(r)

A related parameter, the significance of which will be seen when we consider
stability in the next section, is the MHD safety factor

q(r) = 2π/ι(r) = r Bz(r)/R0 Bθ (r) (4.29)

The pitch of a field line is defined as the length of its projection on the axis in one
complete rotation about the axis so that it is given by

∫ 2π

0

(
dz

dθ

)
dθ = 2πr Bz(r)

Bθ (r)
= 4π2 R0

ι(r)

In the screw pinch the ability to manipulate two profiles, Bθ (r) and Bz(r), in-
stead of only one gives much greater flexibility in controlling the various physical
parameters which influence stability and other conditions necessary for contain-
ment. One such parameter is the safety factor, while another is the plasma β for
which one needs an optimum value between high β to achieve large nτ (to satisfy
the Lawson criterion) and low β because of instability thresholds. Multiplying
(4.18) by πr2 and integrating from 0 to a gives

∫ a

0
2πr P dr +

∫ a

0
2πr

(
B2

z

2µ0

)
dr − πa2

(
B2

z (a)+ B2
θ (a)

2µ0

)
= 0
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which may be written as

〈P〉 + 〈B2
z /2µ0〉 − B2

z (a)

2µ0
− B2

θ (a)

2µ0
= 0 (4.30)

where

〈X〉 = 1

πa2

∫ a

0
2πr X (r) dr

is the average value of X (r) over a cross-section of radius a. Defining

〈β〉 = 2µ0〈P〉
B2(a)

(4.31)

and similarly the corresponding ‘poloidal’ and ‘toroidal’ parameters as

βp = 2µ0〈P〉
B2
θ (a)

βt = 2µ0〈P〉
B2

z (a)
(4.32)

we may write (4.30) as

1

〈β〉 = 1

βp
+ 1

βt
= 1 + 〈B2

z 〉
2µ0〈P〉 (4.33)

This equation shows the flexibility of the screw pinch. Clearly, 〈β〉 can take
values in the range 0 ≤ 〈β〉 ≤ 1. Furthermore, any particular value can be achieved
given the range of choices for βp and βt. This contrasts sharply with theta- and
Z-pinches where 〈β〉 is given by βt and βp respectively and, in the latter case,
〈β〉 = βp = 1. Note from the first equality in (4.33) that whenever βp and βt differ
in magnitude, 〈β〉 is given approximately by the smaller of these parameters.

4.3.2 Toroidal configurations

So far the discussion of plasma confinement has concentrated entirely on radial
containment. There is nothing to prevent the plasma from flowing freely along the
field lines and in cylindrical discharges plasma will be lost through the ends of the
device unless something is done to prevent this. The obvious answer is to bend the
cylinder round into a torus so that, rather than flowing out of the ends, the plasma
flows round and round the device. This, however, introduces a second equilibrium
constraint, known as the toroidal force balance.

Qualitatively, we can see how the problem arises by picturing what happens to
the magnetic surface surrounding the initially cylindrical plasma as it is bent into
a torus. There results a net outward force on the toroidal plasma which has two
components, one due to the plasma pressure and the other due to the magnetic
pressure.
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Fig. 4.7. Net outward force in a torus due to plasma pressure.

The first of these is akin to the force in an inflated tyre and is simply due to the
fact that the total surface area of the outer half of the tube, or in our case magnetic
surface, is greater than that of the inner half, while the pressure is constant over
the (isobaric) surface so that the force outwards is greater than the force inwards.
This is demonstrated schematically in Fig. 4.7 by plan and cross-sectional views of
cylindrical and toroidal configurations. Segments of equal area (S) in the cylinder
are stretched on the outer surface So(> S) and compressed on the inner surface
Si(< S) of the torus.

The other force involving the magnetic field is best understood by considering
poloidal and toroidal fields separately. When there is only a poloidal field (the
case, illustrated in Fig. 4.8, of bending a Z-pinch into a torus) this force is similar
to the outward force experienced by a current-carrying circular loop. Conservation
of magnetic flux generated by the current means that field lines are more densely
packed inside the loop than outside so that the field strength is greater inside giving
a net j × B force radially outwards.

For the purely toroidal field consider the simple case, shown in Fig. 4.9, of no
initial internal field. Then the current flows in a thin skin at the plasma surface
and the external field, generated by the current Ic in the toroidal field coils, is
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Fig. 4.8. Net outward j × B force in a torus due to the poloidal field.
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Fig. 4.9. Net outward j × B force in a torus due to the toroidal field.
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Fig. 4.10. A perfectly conducting wall can provide toroidal force balance for (a) poloidal
fields but not for (b) toroidal fields.

Bt = µ0 Ic/2πR. The R−1 dependence means that Bt is again stronger on the inner
side of the torus than on the outer side with the same result as before.

The net toroidal force is usually quite small compared with the forces involved in
radial pressure balance but the plasma and its self-generated ‘containing’ magnetic
field cannot provide compensation which must, therefore, be applied externally.
Provided there is a poloidal component of the magnetic field outside the plasma, as
shown in Fig. 4.10(a), compensation may be provided by surrounding the plasma
with a perfectly conducting wall. Then, since field lines cannot penetrate the wall
they are compressed as the plasma moves towards the wall and the increase in
magnetic pressure eventually balances the net toroidal force. Note that this does
not work if the external field is purely toroidal since the field lines are not trapped
between plasma and wall but can slip around the plasma as can be seen from Fig.
4.10(b). Since walls are not perfect conductors the compressed field leaks away in
a finite time. This may be shorter than other times of interest which is a drawback
to this method.

Another approach is to impose a vertical magnetic field by means of external
coils as shown in Fig. 4.11. By suitable choice of current direction the vertical field
reinforces the poloidal field on the outer side of the plasma and opposes it on the
inner side providing the desired compensation. Here again, note that this does not
work for a purely toroidal field since the vertical field is everywhere at right angles
to the toroidal field and therefore has no effect. It follows that a poloidal component
of magnetic field is essential for toroidal force balance.
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Fig. 4.11. Toroidal force balance provided by external coils.
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Fig. 4.12. E × B drift due to toroidal field.

Herein lies the dilemma of plasma containment. A theta-pinch has good radial
stability (the plasma sits in a magnetic well) but if bent into a torus, with no poloidal
field, there is no toroidal equilibrium. On the other hand, a closed toroidal system
with a magnetic field that is predominantly poloidal will have good toroidal equi-
librium but poor radial stability. The challenge is to find the optimal mix of poloidal
and toroidal fields which can provide toroidal equilibrium without sacrificing radial
stability.

The problem of maintaining toroidal equilibrium can be described in terms of
particle orbits and was mentioned briefly in Section 2.10. As noted there and above,
the toroidal field generated by external coils decreases with major radius R across
the plasma. Consequently, there is a drift of the particle guiding centre relative to
the lines of force which is a combination of grad B and curvature drifts. Such drifts
are in opposite directions for ions and electrons so that an electric field is created
and the E × B drift (the same for both species) is radially outward as shown in Fig.
4.12. Thus, if there is only a toroidal field there is no toroidal equilibrium.
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Fig. 4.13. Illustration of poloidal field compensation for particle drift in a torus.

Now the introduction of a poloidal field Bp can compensate for the particle drift
as illustrated in Fig. 4.13. For simplicity, consider a flux surface on which the
field lines rotate once in the poloidal direction during one circuit in the toroidal
direction. With no drift a particle would simply gyrate about a field line, which
for example starts at point 1 on the surface, reaches point 2 a quarter of the way
round, point 3 halfway round and so on, returning to point 1 after one toroidal
revolution. An upward drift (the case illustrated) causes the particle to leave this
particular field line and move continuously across magnetic surfaces arriving at
points 2′ and 3′ instead of 2 and 3. Thereafter, an upward drift means that the
particle moves back towards the original magnetic surface arriving back at point 1
via point 4′.

The example we have considered is a particularly simple one. In general, neither
the particle nor the field line will arrive back at the same point after one revolution
but will be displaced through some angle in the poloidal plane as illustrated in Fig.
4.14. In an equivalent cylinder of length 2πR0 this angle is the rotational transform.
In a torus, in general, the change in poloidal angle per toroidal revolution depends
on the starting point, so the rotational transform is defined as the average change
over a large number of revolutions

ι = lim
N→∞

1

N

N∑
n=1

�θn

If ι is a rational fraction of 2π the line will eventually return to its starting position
(i.e. the field lines are closed); if not, it is said to be ergodic.
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Fig. 4.14. Rotation of field lines in a torus.

The safety factor q = 2π/ι and is therefore equal to the average number of
toroidal revolutions required to complete one poloidal revolution or

q = lim
N→∞

Nt

Np

where Nt, Np are the toroidal and poloidal winding numbers, respectively, and the
limit is taken over an infinite number of revolutions. If �φ is the average change
in toroidal angle for one poloidal revolution q = �φ/2π and since

Rdφ

ds
= Bt

Bp

where ds is the distance moved in the poloidal plane, it follows that

q = 1

2π

∮
Bt

RBp
ds (4.34)

where the integral is over a single poloidal circuit around the flux surface. For a
torus of circular cross-section and large aspect ratio R0 
 a, where R0, a are the
major and minor axes, respectively, we may put R = R0 and Bt ≈ Bt(R0) so that

q(r) = r Bt

R0 Bp
(4.35)

in agreement with (4.29) for the cylindrical case.
Another representation for q can be obtained by considering the magnetic flux

through an annulus between two neighbouring flux surfaces, as illustrated in Fig.
4.15. The poloidal flux through the annulus is

dψ = 2πRBp dx (4.36)
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Fig. 4.15. Magnetic flux through an annulus between flux surfaces.

where dx is the separation at R between the flux surfaces. The toroidal flux is

d� =
∮

ds(Bt dx) (4.37)

Substituting (4.36) in (4.34) and using (4.37) then gives

q = d�

dψ

expressing q as the rate of change of toroidal flux with poloidal flux.
To describe the equilibrium configuration of a plasma torus we use the cylin-

drical coordinates (R, φ, Z) shown in Fig. 4.16(a) and assume toroidal axisym-
metry, i.e. there is no dependence on the azimuthal coordinate φ. It follows from
B = ∇ × A that we may write

BR = − 1

R

∂ψ

∂Z
BZ = 1

R

∂ψ

∂R
(4.38)

where ψ = R Aφ is called the flux function. We note that (B · ∇)ψ = 0, on
using (4.38), so that the magnetic surfaces are surfaces of constant ψ which may,
therefore, be used to label them. In fact, 2πψ is the total poloidal flux through a
circle of radius R centred at the origin in the Z = 0 plane. Referring to Fig. 4.16(b)
we have∫

B · dS =
∫

∇ × A · dS =
∮

C(R)
A · dl = 2πR Aφ = 2πψ(R, 0)
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Fig. 4.16. Coordinate configuration of a torus in (a) side and (b) plan view.

where we have used Stokes’ theorem to convert the surface integral to a line
integral. Now substituting (4.12) in (4.10) and using (4.38) for BR and BZ we
get

µ0
∂P

∂R
+ Bt

R

∂

∂R
(R Bt)+ 1

R2

∂ψ

∂R
�∗ψ = 0 (4.39)

∂ψ

∂R

∂

∂Z
(R Bt)− ∂ψ

∂Z

∂

∂R
(RBt) = 0 (4.40)

µ0
∂P

∂Z
+ Bt

∂Bt

∂Z
+ 1

R2

∂ψ

∂Z
�∗ψ = 0 (4.41)
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where

�∗ψ = ∂2ψ

∂R2
− 1

R

∂ψ

∂R
+ ∂2ψ

∂Z2
(4.42)

and we have identified Bφ as the toroidal magnetic field Bt.
Equation (4.40) may be written as ∇ψ × ∇(R Bt) = 0 showing that surfaces of

constant RBt are also surfaces of constant ψ , i.e. RBt = F(ψ), for some function
F . In fact, F(ψ) is related to the total poloidal current Ip through the disc of radius
R shown in Fig. 4.16(b). We have

Ip =
∫

j · dS = 1

µ0

∫
∇ × B · dS = 1

µ0

∮
C(R)

B · dl = 2πRBt

µ0
(4.43)

Thus, F(ψ) = µ0 Ip(ψ)/2π . Substituting this result in (4.39) and (4.41), multiply-
ing by ∂ψ/∂Z and ∂ψ/∂R respectively, and subtracting gives

∂P

∂R

∂ψ

∂Z
− ∂P

∂Z

∂ψ

∂R
= 0

i.e. ∇P×∇ψ = 0. Hence P = P(ψ), a result we already know since the magnetic
surfaces are isobaric surfaces.

Finally, since P and RBt are functions of ψ we may write (4.39) as

�∗ψ + F F ′ + µ0 R2 P ′ = 0 (4.44)

where the prime denotes differentiation with respect to ψ . This is the general
equation for axisymmetric, toroidal equilibria and is known as the Grad–Shafranov
equation. It is a non-linear partial differential equation, derived from the ideal
MHD equations for static, toroidal equilibria with azimuthal symmetry (∂/∂φ ≡
0), for the flux function ψ which determines the poloidal magnetic field. It ex-
presses the balance between plasma pressure gradient (third term) and the j × B
contributions (first and second terms). Of the latter, the first term represents the
toroidal current and poloidal field, which we identified as essential for toroidal
stability, and the second term comes from the poloidal current and toroidal field
determining radial stability. Indeed, it is easy to see that if we drop the first term in
(4.44) we can integrate and by using (4.43) recover (4.19), the equation for radial
equilibrium in a theta-pinch.

Solutions to the Grad–Shafranov equation provide a complete characterization
of axisymmetric ideal MHD equilibria. The nature of the equilibrium configuration
is determined by the choice of the two arbitrary functions P(ψ) and F(ψ), for
the pressure and current profiles, together with the boundary conditions. Given
P and F , (4.44) is solved as a boundary value problem to find the flux function
ψ(R, Z). The main difficulty lies in the fact that P and F are themselves func-
tions of ψ , which is not known until (4.44) is solved. Although some progress
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Fig. 4.17. Toroidal field variation with major radius in a tokamak.

can be made analytically either in closed form under certain restrictive conditions
(see Exercise 4.4) or by expansion in terms of the inverse aspect ratio, a/R0,
the Grad–Shafranov equation generally has to be solved numerically (see Sec-
tion 4.3.3).

Before discussing numerical solutions it is instructive to consider briefly three
limiting cases within the general equation. By setting F F ′(ψ) = 0 we discard
the poloidal current in the plasma. The toroidal magnetic field behaves as R−1

and pressure balance is maintained solely by jt × Bp. For this case βp = 1. On
the other hand, P ′(ψ) = 0 corresponds to the special case in which the magnetic
field is force-free, in the sense to be described in Section 4.3.4, and there is no
containment. When pressure balance is maintained predominantly by jp × Bt, the
poloidal current term in the Grad–Shafranov equation F F ′(ψ) 
 |�∗ψ | and the
configuration is characterized by βp 
 1 (high beta tokamak). The behaviour of Bt

as a function of the major radius of the tokamak is shown in Fig. 4.17 for different
magnitudes of βp.

Three examples of toroidal configurations are illustrated in Fig. 4.18. Since the
compensating force required for toroidal equilibrium is usually much smaller than
those involved in radial force balance one would expect |Bp| � |Bt| as in the
tokamak and screw pinch. In fact, for tokamaks |Bt| > |Bp|R0/a which means that
a field line makes several transits around the torus before completing one spiral of
the minor axis. The toroidal current flows mainly in the plasma column.

In the screw pinch, on the other hand, the current flows mainly in a sheath
surrounding the plasma column. Likewise, the poloidal field does not penetrate
the plasma and in the vacuum |Bt| ∼ |Bp|R0/a.

The reversed field pinch differs in that |Bt| ∼ |Bp| so that the field lines spiral
many times around the magnetic axis in going once round the torus. One would
not expect containment from such a high poloidal field because the associated
large toroidal current is inimical to radial stability. However, as we shall discuss in
Section 4.7.1, strong magnetic shear can act as a stabilizing mechanism to provide
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Fig. 4.18. Toroidal and poloidal fields in (a) tokamak, (b) screw pinch, (c) reversed field
pinch.

a stable configuration in which the toroidal field reverses its direction in the outer
part of the plasma column, known as the reversed field pinch.

4.3.3 Numerical solution of the Grad–Shafranov equation

Structurally, the Grad–Shafranov equation in the form �∗ψ = S(r, ψ), where S is
a non-linear functional of ψ , is a second-order, non-linear elliptic partial differen-
tial equation. Apart from a number of special cases, two-dimensional axisymmetric
equilibria have to be determined numerically. Equilibria are determined by the
choice of S(r, ψ), i.e. P(ψ) and F(ψ), along with specified boundary conditions.
In the simplest case the plasma might be contained within a conducting shell at
which ψ is specified; this corresponds to a fixed-boundary problem. If, on the other
hand, a region of vacuum is present between the plasma and the conducting shell
we have a free–boundary problem since neither the position nor the shape of the
boundary are known. In practice both the position and shape of the plasma are
determined by external coils carrying known currents. Alternatively, the inverse
problem prescribes the boundary and then leaves the current distributions needed
to provide this to be determined. Codes are used to solve the Grad–Shafranov
equation for tokamak equilibria. Here we limit ourselves to solving a simple model
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Fig. 4.19. Flux surfaces for tokamak equilibria for (a) βp < 1, (b) βp ∼ 1, (c) βp > 1.

problem of a plasma bounded by a perfectly conducting boundary with circular
cross-section. By and large, techniques for solving elliptic equations use direct or
iterative methods. The matrix equation resulting from a finite difference discretiza-
tion in the (R, Z) plane, though large, is sparse and is readily solved iteratively
(Press et al. (1989)).

To characterize particular tokamak equilibria means prescribing functional
forms for P(ψ) and F(ψ). Sections of a cosine function were used to compute
the flux surfaces shown in Fig. 4.19 for values of βp corresponding to A−1, A0

and A where A is the aspect ratio R0/a. For βp ∼ A−1 the current and magnetic
field are approximately collinear so that the entire plasma is very nearly force-free.
The poloidal current jp ∼ (Bp/Bt) jt gives rise to an enhancement of Bt; F F ′ < 0
and the flux surfaces for this case are approximately concentric circles. At a later
stage of the discharge the rise in plasma pressure means that βp ∼ 1 and a dia-
magnetic current now tends to annul the poloidal current with the result that the
magnetic surfaces are displaced toward the outer wall of the tokamak as shown in
Fig. 4.19(b).

Increasing βp to values of the order of A and above results in flux surfaces that
are displaced yet further outwards. This shift is known as the Shafranov shift. Flux
surfaces are now compressed on the outside with a corresponding expansion on
the inside. To obtain high-beta equilibria F F ′ must be large and positive. The
poloidal current is reversed from the βp < 1 case and is comparable in magnitude
to the toroidal current. The Bt profile (Fig. 4.17) shows that a diamagnetic well
is now created and this feature is largely responsible for radial pressure balance.
While radial pressure balance for high-beta tokamaks is achieved largely by the
poloidal diamagnetic currents induced in the plasma (as in a theta-pinch), the
toroidal current provides toroidal force balance but is limited on account of the
stability requirement q ≥ 1 (see Section 4.5).
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Fig. 4.20. Cylindrical flux tube with uniform twist.

4.3.4 Force-free fields and magnetic helicity

Although in the outer regions of stars both gas pressure and gravity may be negli-
gible, the plasma can carry significant currents. If there is to be equilibrium in such
regions it follows that the Lorentz force j × B must vanish also, i.e. the field must
be force-free. This means that j and B are parallel so that we may write

∇ × B = αB (4.45)

where, in general, α will be spatially dependent. However, taking the divergence
of (4.45) and using ∇ · B = 0, we see that α must obey

B · ∇α = 0

i.e. α is constant along a field line. The implication of (4.45) is that as one follows
a particular field line the neighbouring field lines rotate in a constant manner about
it.

A simple example of a force-free field can be obtained by starting with a cylindri-
cal flux tube in which the field lines are initially all parallel to the axis, B = Bz(r)ẑ,
and rotating one end of it through an angle ι = 2πR0ε, keeping the other end fixed,
as shown in Fig. 4.20. Note that ι is the same for all r so that everywhere

Bθ (r)

Bz(r)
= r

dθ

dz
= r ι

2πR0
= εr (4.46)
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where ε is the uniform twist (rotation per unit length) of the field. Putting P = 0
in (4.18) and substituting for Bθ (r) from (4.46) gives

2ε2r

1 + ε2r2
+ 1

Bz

dBz

dr
= 0

which integrates to yield the result

Bz(r) = B0

1 + ε2r2
Bθ (r) = εr B0

1 + ε2r2

where B0 is the value of Bz on the axis. It is easily verified from (4.45) that α(r) =
2ε/(1 + ε2r2) in this example.

An important theorem about force-free fields is that an isolated conducting fluid
mass cannot have a field that is force-free everywhere. This follows from the virial
theorem (see p. 84) on putting ∇P = 0 and means that a force-free field must
be anchored on a bounding surface; it cannot arise entirely from currents within a
finite volume.

Further theorems relating to force-free fields in closed systems were proved by
Woltjer (1958). He showed the invariance of the quantity

K =
∫

V
A · B dτ

where A is the vector potential (B = ∇×A) with the integral taken over the whole
volume of the closed system, and then used this to prove that force-free fields with
constant α represent the state of minimum energy in a closed system. K , known
as the magnetic helicity, provides a measure of the complexity of the magnetic
field topology since it represents the interlinking of magnetic field lines. In ideal
MHD a closed field line interlinking another with given connectivity maintains this
connectivity through any plasma motion with the consequence that the topological
properties of the field are preserved.

To establish the invariance of K we use (3.5) to get

dK

dt
=
∫

V
A · ∂B

∂t
dτ +

∫
V

∂A
∂t

· B dτ

Then substituting B = ∇ × A and using the expansion of ∇ · (∂A/∂t × A) we
obtain

dK

dt
=
∫

V

[
∇ ·

(
∂A
∂t

× A
)

+ 2
∂A
∂t

· ∇ × A
]

dτ

From (4.4) we have
∂A
∂t

= u × ∇ × A
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so the second term in the integral vanishes. Using Gauss’ theorem the first term
may be converted to the integral of (∂A/∂t × A) over the surface of the closed
system. However, ∂A/∂t must vanish on this surface since A is continuous across
the surface and the motions inside a closed system cannot affect the vector potential
outside the system. This establishes the invariance of K .

Next we examine the stationary values of the magnetic energy

WB =
∫

V
(B2/2µ0)dτ

subject to the condition that K is constant, i.e. we take the variation of WB − 1
2α0 K ,

obtaining

δ

(
WB − 1

2
α0 K

)
= 1

µ0

∫
V

[
B · δB − α0

2
(δA · B + A · δB)

]
dτ

Substituting δB = ∇ × δA and again using the expansion of the divergence of a
vector product this becomes

δ

(
WB − 1

2
α0 K

)

= 1

µ0

∫
V

[
∇ ·

(
δA × B + α0

2
A × δA

)
+ (∇ × B − α0B) · δA

]
dτ

= 1

µ0

∫
V
(∇ × B − α0B) · δA dτ

on using Gauss’ theorem to convert the first term to a surface integral which again
vanishes since δA is zero on the boundary. Thus, for arbitrary choice of δA there is
an extremum if and only if

∇ × B = α0B (4.47)

in which α0 is a constant.
Because of their importance in astrophysics much effort has been put into finding

such fields. Taking the curl of (4.47) gives the Helmholtz equation

(∇2 + α2
0)B = 0 (4.48)

the solutions of which are well-known. However, it must be remembered that this
increases the differential order of the equation and not all solutions of (4.48) satisfy
(4.47).

Another approach to the investigation of force-free fields uses the Clebsch vari-
able representation

B = ∇α × ∇β (4.49)
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introduced in Section 2.9. It is clear from this representation that (4.49) satisfies
∇ · B = 0. Also, since

B · ∇α = 0 = B · ∇β (4.50)

it follows that α and β are constant on each field line and, therefore, may be used
to label each field line. Substitution of (4.45) in (4.50) and using (4.49) for B gives

[∇ × (∇α × ∇β)] · ∇α = 0 = [∇ × (∇α × ∇β)] · ∇β (4.51)

as coupled differential equations to be solved for α and β.
Only a limited range of solutions of such non-linear equations may be found

by analytical methods. However, numerical solutions may be generated using
variational techniques. This is discussed in Sturrock (1994) in which the Clebsch
variable representation is used to show that δW = 0 leads to force-free field config-
urations, provided α and β are constant on the bounding surface (see Exercise 4.5).

4.4 Solar MHD equilibria

Magnetic fields play a key role in solar physics ranging from their creation through
dynamo action to their role in sunspot formation and in dramatic, if transient,
phenomena such as solar flares. As a consequence, many aspects of solar physics
are governed by magnetohydrodynamics. The plasma beta serves as an index of the
relative importance of magnetic effects. In this section we make use of a simple flux
tube model, developed by Parker (1955), to gain insights into aspects of solar MHD
equilibria. Parker’s flux tube model is particularly useful in view of the subsequent
realization that virtually all the magnetic flux extruding from the surface of the Sun
is concentrated into isolated flux tubes or bundles of these.

The long-held view that the background magnetic field at the Sun’s surface was
weak was undermined by high resolution observations that uncovered a hierarchy
of magnetic structures. While the mean field over large regions of the surface of the
Sun is indeed no more than ∼ 0.5 mT, these observations showed that the magnetic
flux through the surface, far from being uniform, is concentrated into flux tubes
with intensities typically a few hundred times the mean field, over diameters of a
few hundred kilometres. This localization of flux is not what one might expect
intuitively. The region across which the flux tube bursts through the surface is
known as a magnetic knot and was first identified by Beckers and Schröter (1968)
from high resolution Hα pictures. They estimated that around 90% of the flux in
active regions is accounted for by flux tubes appearing at magnetic knots. Beyond
the appearance of knots the picture is yet more complicated, with knots attracting
one another to form aggregates of flux tubes which in turn break up or, more
rarely, go on to develop into sunspots, extending across regions with scale lengths
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typically hundreds of times that of a magnetic knot. These observations led to a
reappraisal of the solar magnetic field. The picture now appears to be one in which
magnetic flux penetrating the surface of the Sun is concentrated into intense flux
tubes distributed over the surface.

Of the many questions raised by these observations perhaps the most puzzling
is why the Sun’s magnetic field should appear as intense isolated flux tubes sur-
rounded by field-free zones, a configuration that is to say the least counter-intuitive.
Conventionally one might picture the magnetic field spreading to fill the whole
of space allowed by the tension B2/µ0 along the lines of force. However Parker
(1955) pointed out that allowing for the solar gravitational field results in magnetic
buoyancy and this buoyancy is responsible for isolating the magnetic field into
individual flux tubes.

4.4.1 Magnetic buoyancy

Consider the magnetohydrostatic equilibrium of a flux tube deep in the photosphere
(see Fig. 4.21). Following Parker, we assume that the flux tube is slender, in the
sense that its diameter is small compared with scale lengths characterizing varia-
tions along the tube, as for example the radius of curvature. Allowing for the Sun’s
gravitational field, the magnetohydrostatic condition is now expressed as

1

µ0
(∇ × B)× B − ∇P − ρ∇ψ = 0 (4.52)

where ψ is the gravitational potential. For simplicity we assume that initially the
flux tube is horizontal and aligned in the x-direction. The fluid pressure within the
flux tube, Pint(x, z), is governed by a purely hydrostatic equilibrium. If we neglect
the field from any neighbouring flux tubes pressure balance across the flux tube is
simply expressed by equating the external pressure Pext to the total internal pressure

Pext(x, z) = Pint(x, z)+ B2(x, z)

2µ0
(4.53)

Thus the field strength is determined by the ambient fluid pressure which in turn is
a function of the gravitational potential ψ , so that B = B(ψ). Assuming the fluid
is governed by the equation of state for an ideal gas P = ρkBT/m, where ρ is the
mass density and m the particle mass, and the temperature is uniform, the external
density ρe must exceed the internal density ρi . There is, therefore, a buoyancy force
A(ρe − ρi )∇ψ per unit length where A denotes the cross-section of the flux tube.
The magnitude of this force F per unit length is then

F = B2

2µ0
(4.54)
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Fig. 4.21. Buoyancy of flux tubes from the convective zone to the surface of the Sun.

where  ≡ kBT/mg is the local scale height, and the flux tube will rise through
the photosphere in response to it. In general a flux tube rising in this way will not
remain horizontal (see Fig. 4.21) and once some curvature develops the buoyancy
will be countered by magnetic tension along the field lines. Provided the length
of the flux tube L > 2 magnetic buoyancy forces continue to act. Parker also
showed that raising a section of a long flux tube will result in a flow of plasma
from that section and so serve to enhance buoyancy.

The simplicity of the magnetic buoyancy concept set alongside evidence that
the background magnetic field of the Sun appears as a distribution of isolated flux
tubes is appealing though the model needs modification to allow for realities such
as turbulence in the convective zone and the fact that solar rotation distorts flux
tubes. At a deeper level one might question where flux tubes come from in the first
place. There are no grounds for supposing that the magnetic fields generated by dy-
namo action would produce long flux tubes. It would seem that some mechanism,
possibly an instability, is needed to cause the fields generated deep in the convective
zone to fragment and concentrate. Further questions are posed by observations of
the apparent mutual attraction of magnetic knots and their coalescence leading to
the formation of sunspots. Many issues affecting magnetic buoyancy are discussed
in detail by Parker (1979), Priest (1987) and Hughes (1991).
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4.5 Stability of ideal MHD equilibria

Having discussed various plasma equilibria we now turn to a consideration of
their stability. The most striking feature of observations of Z-pinch dynamics is a
tendency for the plasma to twist and wriggle prior to breaking up. Z-pinches appear
to be inherently unstable dynamical systems. Furthermore, we have seen that there
is no toroidal equilibrium without a poloidal component of the magnetic field.
Toroidal configurations must therefore have a non-zero toroidal current which may
then act as a source of free energy for the development of instabilities. The question
of stability is of vital importance for plasma containment and for explaining natural
phenomena like solar flares, sunspots and prominences.

The terms stable, unstable describe the behaviour of dynamical systems in
equilibrium towards small perturbations of the system. If a perturbation causes
forces to act on the system tending to restore it to its equilibrium configuration, the
system is said to be in stable equilibrium (with respect to the class of perturbations
considered). If, on the other hand, the system tends to depart further and further
from the equilibrium configuration as a result of the perturbation, it is in unstable
equilibrium.

In general, plasma instabilities may be broadly categorized as macroscopic or
microscopic. The first class involves the physical (spatial) displacement of plasma
and may be discussed within the framework of the MHD equations. Microscopic
instabilities need to be described on the basis of kinetic theory since they arise
from changes in the velocity distribution functions and this information is lost in
the MHD description. Although microscopic instabilities can be very important,
usually they are less catastrophic than MHD instabilities and so the latter are
normally one’s first concern. Likewise, ideal MHD stability may be regarded as
a first step towards MHD stability because the introduction of dissipation allows
slippage between fluid and field which usually facilitates instability; if this is so
we may expect that an ideal MHD stability condition is necessary but not always
sufficient for maintaining the equilibrium.

In this section the ideal MHD stability of some static configurations is discussed.
The investigation of ideal MHD stability can be approached in a number of ways.
We emphasize at the outset that we shall confine our attention to linear stability
analyses. Within a linear framework stability considerations can be approached
from the point of view of an initial value problem or alternatively, from a normal
mode perspective. The first determines the evolution in time of a prescribed initial
perturbation and in so doing provides more information than is needed to answer
the question of stability. The normal mode approach leads to an eigenvalue equa-
tion. Since in practice most stability problems can only be resolved numerically,
the normal mode route generally offers advantages over solving the initial value
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problem. Here we shall describe both methods, starting with the initial value prob-
lem.

Since we are concerned with small departures from equilibrium we can apply
perturbation theory to the ideal MHD equations in Table 3.2. We write

ρ(r, t) = ρ0(r)+ ρ1(r, t)
u(r, t) = u0(r)+ u1(r, t) = u1(r, t)
P(r, t) = P0(r)+ P1(r, t)
B(r, t) = B0(r)+ B1(r, t)


 (4.55)

where the subscripts 0 and 1 denote equilibrium and perturbation values, respec-
tively, and we have put u0 = 0 since the equilibrium is static. Ignoring products of
the perturbations gives, to zero order, the equilibrium equation

µ0∇P0 = (∇ × B0)× B0 (4.56)

and, to first order,

∂ρ1

∂t
= −u1 · ∇ρ0 − ρ0∇ · u1 (4.57)

ρ0
∂u1

∂t
= −∇P1 + 1

µ0
(∇ × B0)× B1

+ 1

µ0
(∇ × B1)× B0 (4.58)

∂B1

∂t
= ∇ × (u1 × B0) (4.59)

∂P1

∂t
= −u1 · ∇P0 − γ P0∇ · u1 (4.60)

In deriving (4.60) we have used (4.57) to simplify the final expression.
Now since u1(r, t) is the only time-dependent variable on the right-hand sides

of (4.57), (4.59) and (4.60) we may integrate them partially with respect to time.
It is convenient to choose initial conditions such that the constants of integration
ρ1(r, 0),B1(r, 0) and P1(r, 0) are all zero; this simply means that we start at
the equilibrium configuration and disturb it dynamically by means of a non-zero
u1(r, 0). The integrated equations are

ρ1(r, t) = −ξ(r, t) · ∇ρ0 − ρ0∇ · ξ(r, t) (4.61)

B1(r, t) = ∇ × (ξ(r, t)× B0(r)) (4.62)

P1(r, t) = −ξ(r, t) · ∇P0(r)− γ P0(r)∇ · ξ(r, t) (4.63)

where the displacement vector

ξ(r, t) ≡
∫ t

0
u1(r, t ′)dt ′ (4.64)
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From (4.64)
∂ξ

∂t
= u1(r, t) (4.65)

so that the initial conditions on ξ are

ξ(r, 0) = 0 ∂ξ(r, 0)/∂t = u(r, 0) �= 0 (4.66)

We have written the integral of (4.57) for future reference but it may be noted
that ρ1 no longer appears in the remaining equations (4.58)–(4.60) which form a
closed set. Thus, substituting (4.62) and (4.63) in (4.58) gives

ρ0
∂2ξ

∂t2
= F(ξ(r, t)) (4.67)

where

F(ξ) = ∇(ξ · ∇P0 + γ P0∇ · ξ)+ 1

µ0
(∇ × B0)× [∇ × (ξ × B0)]

+ 1

µ0
{[∇ × ∇ × (ξ × B0)] × B0} (4.68)

The equilibrium configuration defines ρ0, P0, and B0 so that (4.67), together with
appropriate boundary conditions and the initial values (4.66), determines the dis-
placement vector ξ and hence the time evolution of ρ1,B1, P1 and u1. This is the
initial value solution of the linear stability problem.

Finding the normal mode solution is less onerous. We now assume that we may
separate the space and time dependence of the displacement, ξ(r, t) = ξ(r)T (t),
so that (4.67) becomes

T̈ = −ω2T

−ω2ρ0ξ(r) = F[ξ(r)] (4.69)

where the separation constant is chosen as −ω2 so that T (t) = eiωt and ξ(r, t) =
ξ(r)eiωt . Since F(ξ) is linear in ξ, (4.69) represents an eigenvalue problem in which
the boundary conditions determine the possible values of ω2. If these are discrete
and labelled with suffix n, the general solution of (4.67) is

ξ(r, t) =
∑

n

ξn(r)e
iωn t (4.70)

where ξn(r) is the normal mode corresponding to the normal frequency ωn . One
can show from the properties of F(ξ) that for any discrete normal mode the eigen-
value ω2

n is real (see Exercise 4.7). It is then clear from (4.70) that if, for all the
normal frequencies, ω2

n > 0 then all the modes are periodic. This means that the
system oscillates about the equilibrium position. On the other hand, if at least one
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of the normal frequencies is such that ω2
n < 0 the corresponding normal mode will

grow exponentially and the equilibrium configuration is unstable.
This property of real eigenvalues is directly related to the conservation of energy

in ideal MHD. In principle, by suitable choice of initial perturbation, one could ex-
cite each normal mode in turn. The mode can either oscillate about the equilibrium
position or the perturbation can grow continuously as the potential energy of an
unstable equilibrium position is converted to kinetic energy. Damped or growing
oscillations are not possible since these would require an energy sink or source.
Thus, ωn is either real or pure imaginary and ω2

n is real. This leads ultimately to the
most elegant and efficient method of investigating stability, the energy principle.
It is also important for the analysis of neutral or marginal stability. In general
the transition from stability to instability takes place at �ω = 0 and �ω must be
calculated. In ideal MHD, however, stability boundaries are defined by ω = 0
which makes their determination much easier.

4.5.1 Stability of a cylindrical plasma column

By way of illustration we apply the normal mode analysis to determine the stability
of a cylindrical plasma of length L and circular cross-section of radius a. We
assume that the equilibrium fields in the plasma and the surrounding vacuum are

B0 = (0, 0, B0) (4.71)

and

B̃0 = (0, Bθ (r), Bz) (4.72)

respectively, where B0 and Bz are constants and Bθ (r) is the azimuthal field due
to the current flowing along the plasma column. Substituting (4.71) in (4.12) gives
j = 0 everywhere except at the edge of the plasma column and, if the total ‘skin’
current is I , it follows that

Bθ (r) = µ0 I

2πr
(4.73)

Also, since j(r) = 0 (r < a), from (4.10) we see that P0 is constant so that (4.69)
reduces to

−ρ0ω
2ξ(r) = γ P0∇(∇ · ξ)+ 1

µ0
(∇ × B1)× B0 (4.74)

where, for computational convenience, we have re-introduced B1 using (4.62).
We are interested in perturbations with poloidal and axial periodicity so we set

ξ(r) = [ξr (r), ξθ (r), ξz(r)]e
i(mθ+kz) (4.75)
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where m and (kL/2π) take integer values. Also, to lighten the algebra we assume
that

∇ · ξ = 0 (4.76)

which infers that the plasma is incompressible. It is shown in the next section that
allowing for compressibility makes the plasma more rather than less stable so that
for considerations of stability our assumption errs on the side of caution.

The procedure is to solve (4.74) within the plasma column, together with the
field equations in the vacuum surrounding the plasma and to apply the boundary
conditions across the plasma–vacuum interface. It is this last step that determines
the set of values of ω (the normal frequencies ωn) for which (4.70) is an acceptable
solution.

Starting with the plasma interior, it is easily seen that, on using (4.75) and (4.76),
(4.62) becomes

B1 = ik B0ξ (4.77)

and, since P0 is constant, (4.63) gives

P1 = 0 (4.78)

On taking the divergence of (4.74) only the last term contributes giving

∇ · [(∇ × B1)× B0] = B0 · (∇ × ∇ × B1) = −B0 · ∇2B1 = 0

which, on using (4.77), becomes

∇2ξz = 0

In cylindrical polar coordinates this is the Bessel equation[
d2

dr2
+ 1

r

d

dr
−
(

k2 + m2

r2

)]
ξz(r) = 0

for which the solution having no singularity at r = 0 is

ξz(r) = ξz(a)
Im(kr)

Im(ka)
(4.79)

where Im is the modified Bessel function of the first kind of order m.
Next, we use (4.77) and the radial component of (4.74) to obtain

ξr (r) = − ik B2
0

(k2 B2
0 − µ0ρω2)

dξz

dr
= − ik2 B2

0ξz(a)

(k2 B2
0 − µ0ρω2)

I ′
m(kr)

Im(ka)
(4.80)

and, although we shall not require it explicitly, we could likewise find ξθ (r). The
field perturbations in the plasma column are then given by (4.77).
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In the vacuum, since j = 0, we may represent the field perturbation by a scalar
potential

B̃1 = ∇φ (4.81)

where φ takes the form φ(r)ei(mθ+kz). Then ∇·B̃1 = 0 shows that φ(r) satisfies the
same Bessel equation as ξz(r) but here we must choose the solution which vanishes
at infinity giving

φ(r) = φ(a)
Km(kr)

Km(ka)
(4.82)

where Km is the modified Bessel function of the second kind of order m.
Finally, we apply the ideal MHD boundary conditions (3.73) and (3.74) at the

plasma–vacuum interface. The conditions are valid, of course, in both the equilib-
rium and the perturbed configurations so that zero-order terms cancel each other
out and only terms linear in perturbed quantities need be retained. Nevertheless,
this procedure requires some care because linear terms arise from the displacement
of the interface as well as directly from the perturbations. Denoting the equilibrium
position of a point on the interface by r0, its displacement is

r − r0 =
∫ t

0
u1(r0, t ′)dt ′ (4.83)

Comparing this with (4.64) and assuming that r − r0 remains a small quantity it
is easily seen that to first order, r − r0 = ξ(r0, t) 	 ξ(r, t). The subtle difference
between ξ(r, t) and ξ(r0, t), which is of second order, is that (4.83) describes the
displacement of a fluid element (labelled by r0) in a Lagrangian coordinate system
moving with the fluid, whereas (4.64) defines a displacement vector from a fixed
point r in an Eulerian coordinate system relative to a fixed inertial frame. Thus, we
use the expansion

f (r, t) = f0(r, t)+ f1(r, t)

	 f0(r0)+ ξ · ∇ f0 + f1(r, t)

for each quantity appearing in the boundary conditions.
Keeping only first-order terms (3.73) gives

P1 + B0 · B1

µ0
= B̃0 · B̃1

µ0
+ (ξ · ∇)

B̃2
0

2µ0

which, on using (4.71)–(4.73), (4.77), (4.78) and (4.81), becomes

ik B2
0ξz(a) =

[
ik Bz + im

a
Bθ (a)

]
φ(a)− B2

θ (a)

a
ξr (a) (4.84)
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Fig. 4.22. Interface perturbations.

Linearizing (3.74) we have

B1 · n0 + B0 · n1 = 0 (4.85)

and

[B̃1 + (ξ · ∇)B̃0] · n0 + B̃0 · n1 = 0 (4.86)

where n0 = r̂, the radial unit vector, and n1 is the perturbation in n0 due to the
migration of the interface. To find n1 we note that any infinitesimal displacement
δr(r0) from a point r0 on the interface will remain on the interface provided
δr · n0 = 0. Applying this condition on the perturbed interface we have, with
reference to Fig. 4.22,

[δr + (δr · ∇)ξ] · (n0 + n1) = (δr · ∇)ξr + δr · n1 = 0

and, since δr may be chosen arbitrarily, this gives

n1 = −∇ξr

Substituting this in the boundary conditions, (4.85) is satisfied identically and
(4.86) becomes (

dφ

dr

)
r=a

− ik Bzξr (a)− im

a
Bθ (a)ξr (a) = 0
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Fig. 4.23. Sausage instability.

Now we use (4.80) and (4.82) to substitute for ξr (a) and φ′(a) and (4.84) to
eliminate the constant φ(a) obtaining the dispersion relation

ω2

k2
= B2

0

µ0ρ
− (Bz + m Bθ (a)/ka)2

µ0ρ

I ′
m(ka)Km(ka)

Im(ka)K ′
m(ka)

− B2
θ (a)

µ0ρ

I ′
m(ka)

kaIm(ka)
(4.87)

Each term on the right-hand side of this equation is real confirming that ω can be
either real or pure imaginary, i.e. there are no solutions corresponding to damped or
growing oscillations. Instability occurs if ω2 < 0 and, since K ′

m < 0 while Im, Km

and I ′
m are all positive, this requires the third term to be larger in magnitude than

the sum of the first two.
The m = 0 case illustrates the roles of the equilibrium magnetic fields. Both the

internal and external longitudinal fields, B0 and Bz respectively, enhance stability
while Bθ has the opposite effect. This may be explained physically with reference
to Fig. 4.23, which shows an axially symmetric perturbation of the equilibrium
configuration of the Z-pinch. Since Bθ ∝ r−1, the external magnetic pressure on
the plasma surface is increased where the perturbation squeezes the plasma into a
neck and is decreased where the perturbation fattens the plasma into a bulge. This
gradient in the external magnetic field causes the perturbation to grow and, without
an internal field, the necks contract to the axis, giving a sausage-like appearance to
the plasma; hence the name sausage instability. On the other hand, the magnetic
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Fig. 4.24. Marginal stability curve for sausage instability.

pressure due to the longitudinal fields is increased by the plasma perturbations
which are, therefore, resisted.

In the case that Bz = 0 the condition for stability is

B2
0 > B2

θ (a)
I ′
0(ka)

kaI0(ka)
(4.88)

and since I ′
0(x)/x I0(x) < 1/2 for all x there is stability for all k provided B2

0 >

B2
θ (a)/2. However, for given plasma pressure P0 and current I , B0 is bounded

above by the equilibrium pressure condition

P0 + B2
0/2µ0 = B2

θ /2µ0 (4.89)

It is, therefore, somewhat more useful to write the stability condition in terms of the
‘poloidal’ βp = 2µ0 P0/B2

θ (a); see (4.32). Combining (4.88) and (4.89) we have

βp = 2µ0 P0

B2
θ

< 1 − I ′
0(ka)

kaI0(ka)
∼
{

1/2 ka → 0
1 − 1/ka ka → ∞

as the marginal stability condition illustrated in Fig. 4.24.
For m > 0 it is convenient to assume |ka| � 1 so that we may use the

approximations

Im(x) ≈ (x/2)m

m!
Km ≈ (m − 1)!

2

( x

2

)−m
(|x | � 1)

to simplify the dispersion relation (4.87) which then reduces to

µ0ρω
2 = k2 B2

0 +
[
k Bz + m

a
Bθ (a)

]2
− m

a2
B2
θ (a) (4.90)
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Fig. 4.25. Kink instability.

Differentiating ω2 with respect to k it is easily verified that the minimum value of
ω2 occurs at

k = − m Bz Bθ (a)

a(B2
0 + B2

z )
(4.91)

and is given by

ω2
min = B2

θ (a)

µ0ρa2

(
m2 B2

0

B2
0 + B2

z

− m

)
(4.92)

Using the equation of equilibrium pressure balance

P0 + B2
0

2µ0
= B2

z

2µ0
+ B2

θ (a)

2µ0
(4.93)

and (4.32) this may be written in terms of the ratio of the external field components
Bθ (a)/Bz and the ‘toroidal’ βt = 2µ0 P0/B2

z as

ω2
min = m B2

θ (a)

µ0ρa2

[
(m − 1)(1 + B2

θ (a)/B2
z − βt)− 1

(2 + B2
θ (a)/B2

z − βt)

]

showing that for low βt plasmas in devices with |Bθ/Bz| � 1 only the m = 1 and
m = 2 modes can become unstable.
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The unstable m = 1 mode is known as the kink instability since it arises from
the perturbation shown in Fig. 4.25. The distortion grows because the magnetic
pressure on the concave side of the kink is increased (the Bθ lines are closer
together), while that on the convex side is decreased (the Bθ lines are further apart).
Again, the action of the longitudinal fields, whether internal or external, enhances
stability since the tension in the lines of force caused by their stretching tries to
restore the pinch to its equilibrium position. The shorter the wavelength of the
perturbation the greater is the stretching of the field lines. The balance between
the stabilizing z-components and destabilizing θ -component of the magnetic field
leads to an important stability condition.

To investigate this we put m = 1 in (4.90) and use (4.93) to write it in the form

ω2 = k2 B2
z

µ0ρ

[
2

(
1 + Bθ (a)

kaBz

)
+ B2

θ (a)

B2
z

− βt

]

For |Bθ (a)/Bz| � 1 and βt � 1, it follows from this equation that the m = 1
mode is stable for |Bθ/Bz| < |ka| and since |k| cannot be less than 2π/L , where
L is the length of the plasma column, the stability condition is

|Bθ/Bz| < 2πa/L

In a toroidal device, where L = 2πR0, this may be written in terms of the safety
factor (4.29) as

q(a) = aBz(a)/R0 Bθ (a) > 1 (4.94)

a result known as the Kruskal–Shafranov stability criterion. It says that the ratio
of toroidal to poloidal magnetic field must exceed the aspect ratio R0/a. In (4.94)
we have implicitly extrapolated the Kruskal–Shafranov condition to the case of a
diffuse pinch with variable Bz rather than the sharp-edged plasma which was the
subject of our calculation. In fact, the same result can be obtained by a simple
physical argument due to Johnson et al. (1958). We consider an m = 1 helical
perturbation of the plasma such as that shown in Fig. 4.25 and we examine the dis-
placement of a field line by inspecting two cross-sections one-quarter wavelength
apart as shown in Fig. 4.26. If the displacement vector ξ is horizontal at the first
cross-section it will be vertical at the second and if the pitch of B0 is such that the
angle of rotation θ0 > π/2 then the vertical (downwards) displacement of the field
line due to the perturbation means that the angle of rotation has increased. This in
turn implies that the perturbation has increased Bθ relative to Bz , thereby perturbing
the magnetic pressure balance such as to accelerate the downward displacement of
the plasma. It is easy to see that if θ0 < π/2 the angle of rotation is decreased by
the perturbation, so Bθ is decreased relative to Bz and growth of the perturbation
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Fig. 4.26. Illustration of Kruskal–Shafranov stability criterion for the kink instability. The
equilibrium configuration on the left shows the π/2 rotation of a magnetic field line on
traversing a quarter wavelength. The cross-sections on the right show the result of imposing
a kink displacement ξ which is initially horizontal but subsequently vertical due to the π/2
rotation.

is resisted. The stability condition is therefore ι/4 < π/2 at the boundary of the
plasma and from (4.29) this gives (4.94).

The Kruskal–Shafranov criterion, by restricting Bθ (a), sets a limit on the
toroidal current that may be safely driven through the plasma. It is for this reason
that a tokamak has a small ratio of poloidal to toroidal field component.

Tokamaks are also low β devices. This second restriction is related to the un-
favourable curvature of the poloidal field Bθ with respect to the plasma. Whenever
the external field (the field containing the plasma) is concave towards the plasma,
any ripple on the plasma will tend to grow for the same reasons that the sausage and
kink perturbations grow. Containment of these so-called ballooning instabilities
restricts β, as discussed later in Section 4.7.2. Conversely, containing fields which
are convex towards the plasma tend to smooth out ripple perturbations.

4.6 The energy principle

So far, in discussing the stability of equilibria, we have progressed from an initial
value problem to a normal mode analysis, this being made possible by the lin-
earization which led to (4.67) in which only ξ(r, t) is time dependent. The role
of the initial values is merely to determine the mixture of the normal modes in a
particular solution and this is of secondary importance when one’s main interest
is stability; in these circumstances the ‘convenient’ choice of initial conditions
in the integrals (4.61)–(4.63) is not a serious loss of generality. Nevertheless, a



120 Ideal magnetohydrodynamics

normal mode analysis still involves significant effort as we have seen from our
relatively simple example of a sharp-edged, cylindrical plasma. Investigating the
stability of more realistic plasmas and geometries normally is only possible by
numerical analysis. If, however, one merely wants to answer the question ‘Is the
equilibrium configuration stable?’ there is an even more direct approach based on
energy considerations.

Since the ideal MHD equations are dissipationless they conserve energy and a
stable equilibrium configuration must correspond to a minimum in the potential
energy W . This is the physical basis of the energy principle which states that if
there exists a displacement ξ for which the change in potential energy δW < 0 the
equilibrium is unstable.

To find an expression for δW we note that since the equilibrium is static the
(change in) kinetic energy K is 1

2ρ0ξ̇
2 integrated over the whole plasma volume

K (ξ̇, ξ̇) = 1

2

∫
ρ0ξ̇̇ξ̇ξ · ξ̇̇ξ̇ξ dr = −ω2

2

∫
ρ0ξ · ξ dr

= 1

2

∫
ξ · F(ξ) dr (4.95)

by (4.69). Thus, by conservation of energy

δW (ξ, ξ) = −1

2

∫
ξ · F(ξ) dr (4.96)

From (4.95) and (4.96) we may write

ω2 = δW (ξ, ξ)/K (ξ, ξ) (4.97)

which is the variational formulation of the linear stability problem. Given that the
operator F(ξ) is self-adjoint†, that is∫

η · F(ξ) dr =
∫

ξ · F(η) dr (4.98)

for any allowable displacement vectors ξ and η, it is easy to show (see Exer-
cise 4.7) that any ξ for which ω2 is an extremum is an eigenfunction of (4.69) with
eigenvalue ω2. This establishes the equivalence of the variational principle and
the normal mode analysis. But in practice it is analytically and computationally
much easier to investigate stability via the variational principle. One chooses a
trial function ξ = ∑

n anψn , where the ψn are a suitable set of basis functions,
and minimizes δW with respect to the coefficients an subject to the normalization
condition

K (ξ, ξ) = const. (4.99)

† The direct proof of (4.98) is rather lengthy (see Freidberg (1987)).

Igor A. Kotelnikov
Highlight
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If δW < 0 the equilibrium is unstable and the variational principle guarantees that
a lower bound for the growth rate γ of the instability is (−δW/K )1/2.

The energy principle goes a stage further in that one is not restricted to the
normalization condition (4.99). Often, great analytical simplification is achieved
by choosing some other normalization condition. Minimization of δW with the
result δW < 0 then indicates instability but information on the growth rate is lost
since K is unknown. Each step from initial value problem through normal mode
analysis and variational principle to energy principle brings analytical and compu-
tational simplification at the expense of detailed knowledge, from full solution of
the evolution of a linear perturbation to mere determination of the stability of the
equilibrium. Since MHD instabilities tend to be the fastest growing and the most
catastrophic (bulk movement of the plasma) the stability question is usually all one
needs answer. Furthermore, δW may be written in a form that gives good physical
insight into the cause of instability. The energy principle is, therefore, within the
limits of ideal MHD, very effective and widely used.

Returning to (4.96), with F(ξ) given by (4.68), it is straightforward, if tedious,
to recast δW in a more useful and illuminating form; the details are left as an
exercise (see Exercise 4.8). The objective is to express δW as the sum of three terms
representing the changes in potential energy within the plasma (δWP), the surface
(δWS) and the vacuum (δWV). Using vector identities one expresses the integrand
ξ · F(ξ) as a sum of divergence terms and scalar functions. Then, using Gauss’
theorem, the integral of the divergence terms is converted to an integral over the
surface of the plasma. In the surface integral the boundary condition (3.73) is used,
thereby introducing the vacuum magnetic field. From a practical point of view this
is a most important step because the boundary condition is now incorporated in the
energy principle and there is no need to find trial functions obeying the boundary
condition, which is a cumbersome constraint on the use of the energy principle in
its original form. Next, boundary condition (3.73) is used to eliminate the tangen-
tial component of ∇(P + B2/2µ0) in the surface integral; since (3.73) holds all
over the surface the tangential component of the gradient must be continuous and
hence

[n0 × ∇(P + B2/2µ0)]
2
1 = 0 (4.100)

Finally, using Gauss’ theorem again, part of the surface integral is converted to a
volume integral over the vacuum. The result is

δW = δWP + δWS + δWV (4.101)
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where

δWP = 1

2

∫
[B2

1/µ0 − ξ · (j0 × B1)− P1(∇ · ξ)] dr (4.102)

δWS = 1

2

∫
(ξ · n0)

2[∇(P0 + B2
0/2µ0)]

2
1 · dS (4.103)

δWV =
∫
(B̃2

1/2µ0) dr (4.104)

and the integrals are taken over the plasma, surface, and vacuum, respectively.
The three terms in δWP are, respectively, the increase in magnetic energy, the

work done against the perturbed j×B force and the change in internal energy due to
the compression (or expansion) of the plasma. The surface energy δWS is the work
done by displacing the boundary. If there is no surface current the total pressure
gradient is continuous across the boundary and δWS = 0; likewise, δWS = 0
if the boundary is fixed (ξ · n0 = 0). The vacuum contribution δWV is simply
the increase in the energy of the vacuum field. This also vanishes if ξ · n0 = 0
since there is no perturbation of the vacuum field. For fixed boundary problems,
therefore, δW = δWP. Instabilities may be classified as internal (fixed boundary)
or external (free boundary) modes.

After further manipulation (see Exercise 4.8) δWP can be expressed in the form

δWP = 1

2

∫
[B2

1⊥/µ0 + (B2
0/µ0)(∇ · ξ⊥ + 2ξ⊥ · κ)2 + γ P0(∇ · ξ)2

− 2(ξ⊥ · ∇P0)(κ · ξ⊥)− j‖(ξ⊥ × b) · B1⊥]dr (4.105)

where κ = (b · ∇)b is the curvature of the equilibrium magnetic field B0 = B0b
and vector quantities have been separated into parallel and perpendicular compo-
nents relative to b, i.e. X = X‖b+X⊥. The first three (positive) terms in the integral
represent the potential energy associated with the shear Alfvén wave, the compres-
sional Alfvén wave, and the sound wave, respectively. We show in Section 4.8 that
these are the three natural wave modes supported by an ideal MHD plasma. It is
also clear from this form of δWP that compressibility (∇·ξ �= 0) is stabilizing, so it
is often assumed for simplicity that the plasma is incompressible on the understand-
ing that this is a ‘worst case’ assumption and any necessary correction is favourable
to stability. The only possible destabilizing terms are the last two. The instabilities
arising from these are said to be pressure-driven and current-driven, respectively,
although, since ∇P0 = j0⊥ ×B0, both types are driven by the energy in the current
but by different components. This distinction is also used to classify ideal MHD
instabilities. The kink instability is an example of the (parallel) current-driven kind
so instabilities in this class are known as kink instabilities. The pressure-driven
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modes are called interchange instabilities for reasons that will become clear when
we discuss them in Section 4.7.

4.6.1 Finite element analysis of ideal MHD stability

Practical determination of ideal MHD stability on the basis of the energy principle
has to be done computationally. Whereas codes that use finite difference methods
have to ensure that the energy-conserving properties of MHD equilibria reflected
in the self-adjointness of the operator F(ξ) are preserved by the difference scheme,
an alternative approach, the finite element method (FEM), has an advantage in that
it appeals directly to F(ξ), thus ensuring that energy conservation is built into the
numerics. The FEM method was developed for the stress analysis of structures
and was first applied to problems of MHD stability independently by Takeda et al.
(1972) and by Boyd, Gardner and Gardner (1973), who analysed the stability of a
cylindrical tokamak. Subsequently, the approach was generalized and FEM codes
were developed to describe toroidal configurations.

Normalized growth rates for the helical m = 2 mode in a plama column with
free boundary were determined and compared with values obtained by Shafranov
(1970) from an analysis valid for small values of the axial wavenumber k. The vac-
uum region is defined by a < r < b. Figure 4.27 shows the computed normalized
growth rate as a function of nq(a) for k = 0.2 and three values of the ratio a/b. The
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Fig. 4.27. Square of normalized growth rates versus nq(a) for helical m = 2 mode in
plasma column with free boundary. The circles indicate Shafranov’s analytical results (after
Boyd, Gardner and Gardner (1973)).
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range of the instability coincides exactly with the Shafranov range (see Biskamp
(1993))

m − 1 +
(a

b

)2m
< nq(a) < m (4.106)

The behaviour of growth rates as a function of nq(a) shows good agreement with
Shafranov’s theoretical result.

4.7 Interchange instabilities

Since interchange instabilities are pressure-driven they are essentially hydrody-
namic. As an example consider a case where a fluid of density ρ1 lies in a horizontal
layer over one of density ρ2 as shown in Fig. 4.28(a). Now let us perturb the
equilibrium by rippling the boundary layer. We may think of the ripple arising
from the interchange of neighbouring fluid elements as suggested by Fig. 4.28(b).
The fluid element of density ρ1 has moved downwards with consequent loss of
gravitational potential energy while the opposite is true of the fluid element of
density ρ2. Clearly, the net change in potential energy δW has the same sign as
(ρ2 − ρ1) and it follows that the equilibrium is stable if and only if ρ2 ≥ ρ1. This
comes as no surprise; it is intuitively obvious that the only stable equilibrium is
to have the denser fluid supporting the less dense. The instability that arises when
ρ2 < ρ1 is called the Rayleigh–Taylor instability. In a non-ideal fluid the increase
in surface tension due to the stretching of the boundary provides a stabilizing effect
and prevents the growth of the instability for perturbations with wavelengths below
a certain critical value.

(a) (b)

ρ

ρ

1

2 ρ2

ρ1

Fig. 4.28. Rippled boundary layer between fluids of differing densities.

4.7.1 Rayleigh–Taylor instability

Kruskal and Schwarzschild (1954) showed that an MHD analogue of the Rayleigh–
Taylor instability arises when a plasma is supported against gravity by a magnetic
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Fig. 4.29. Boundary perturbations for field lines (a) perpendicular and (b) parallel to the
perturbation.

field. A simple illustration of the origin of the instability can be constructed by
supposing that the field lines are straight and perpendicular to the perturbation, as in
Fig. 4.29(a). We may think of the perturbation as brought about by the interchange
of flux tubes and elongated fluid elements with no change in magnetic energy since
there is no bending of the field lines. The fluid elements, on the other hand, have
lost potential energy; hence, the perturbations will grow and the equilibrium is
unstable.

Although gravity is of no significance in laboratory plasmas any other accel-
eration of the plasma may take on the role of gravity. For example we saw in
Section 2.4.2 that particles moving in curved magnetic fields feel a centrifugal
force which acts like an equivalent gravitational force.

To discuss the instability quantitatively we consider the gravitational case in
plane geometry. This minimizes the algebra without losing the essential physics.
The first point to note is that had we taken the field lines parallel to the perturba-
tion in our simple illustration they would have been bent by the perturbation as
indicated in Fig. 4.29(b), thereby increasing the magnetic energy and providing a
stabilizing effect akin to that of surface tension in the hydrodynamic case. Clearly,
perturbations parallel to the field maximize this stabilizing effect but one cannot
assume perturbations will not arise in a direction perpendicular to the field for
which there is no stabilizing effect. However, by introducing magnetic shear we
can make sure that for any given mode with propagation vector k this least stable
condition, k · B = 0, is restricted to specific layers and does not occur throughout
the plasma. Thus, in our analysis we want to allow for arbitrary orientation of k
to B and vertical variation of the direction of B. Without loss of generality, we
may choose coordinates such that the y axis is vertical and the z axis is parallel to
k, the direction of propagation of the mode under investigation. Then the equilib-
rium magnetic field B0(y) = [Bx(y), 0, Bz(y)] and the gravitational acceleration
g = (0,−g, 0).

With these preliminaries we now proceed to a normal mode analysis of the MHD
Rayleigh–Taylor instability in which the perturbation

ξ(r, t) = [0, ξy(y), ξz(y)]e
i(kz−ωt)
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and, for the reasons discussed earlier, we impose the incompressibility condition

∇ · ξ = dξy

dy
+ ikξz = 0 (4.107)

The dispersion relation is obtained from (4.67) but the inclusion of the gravitational
force ρg in the equation of motion leads to an extra term ρ1g in F(ξ) which, on
using (4.61) and (4.107), becomes

F(ξ) = ∇(ξ · ∇P0)− ξ · ∇ρ0g + 1

µ0
(∇ × B0)× [∇ × (ξ × B0)]

+ 1

µ0
{[∇ × ∇ × (ξ × B0)] × B0} (4.108)

Remembering that equilibrium variables vary only with y, we find for the y and z
components of (4.67)

ρ0ω
2ξy = d

dy
(ξy P ′

0)− gξyρ
′
0 + k2 B2

z

µ0
ξy + ik B ′

z

µ0
(B0 · ξ)

+ 1

µ0
(ik BzB0 · ξ′ − B0 · B′

0ξ
′
y − B0 · B′′

0ξy

+ ik BzB′
0 · ξ − B′

0 · B′
0ξy) (4.109)

ρ0ω
2ξz = ikξy P ′

0 + k2 B2
z

µ0
ξz − k2 Bz

µ0
(B0 · ξ)− ikξy

µ0
(B0 · B′

0)

(4.110)

Substituting for ξz P ′
0 from (4.110) and for ξz from (4.107) then gives

d

dy

[(
ρ0ω

2 − (k · B0)
2

µ0

)
dξy

dy

]
− k2

(
ρ0ω

2 − (k · B0)
2

µ0

)
ξy − k2g

dρ0

dy
ξy = 0

(4.111)
This differential equation contains all the information we need to discuss the

Rayleigh–Taylor instability. For example, the hydrodynamic case is obtained by
putting B0 = 0 and assuming ρ ′

0 = 0 except at y = 0, this being the boundary
between the two fluids, labelled 1 for y > 0 and 2 for y < 0. Then in both fluids
(4.111) is

ξ ′′
y − k2ξy = 0

with solutions

ξy(y) =
{
ξy(0)e−ky y > 0
ξy(0)eky y < 0

Now, integrating (4.111) over the interval −ε < y < +ε and letting ε → 0 we get

−(ρ1 + ρ2)kω
2ξy(0)− k2g(ρ1 − ρ2)ξy(0) = 0
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Fig. 4.30. Schematic illustration of Rayleigh–Taylor instability zone for uniform magnetic
field.

giving

ω2 = −kg(ρ1 − ρ2)

ρ1 + ρ2

and confirming that the equilibrium is unstable if the denser fluid is above the less
dense, i.e. ρ1 > ρ2. Clearly, the fastest growth rate (kg)1/2 occurs when ρ1 
 ρ2.

We next demonstrate the stabilizing effect of a magnetic field by supposing that
the fluids are plasmas and that there is a uniform B0 throughout. From (4.111) we
see that this simply replaces ρ0ω

2 by ρ0ω
2 − (k · B0)

2/µ0 to give

ω2 = −kg(ρ1 − ρ2)

ρ1 + ρ2
+ 2(k · B0)

2

µ0(ρ1 + ρ2)
(4.112)

showing that shorter wavelength modes such that

k ≥ µ0g(ρ1 − ρ2)

2B2
0 cos2 θ

where θ is the angle between k and B0, are stabilized.
The same procedure (see Exercise 4.9) may be used to find the dispersion

relation

ω2 = −kg + (k · B0)
2/µ0ρ0 (4.113)

for the case of an unmagnetized plasma of constant density ρ0 supported by a
uniform magnetic field B0. The qualitative features of both this result and (4.112)
are sketched in Fig. 4.30 for a given wavenumber k, showing that there is always
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an interval around θ = π/2 for which instability occurs. If, however, instead of a
uniform B0 we have a rotating B0(y) then θ = θ(y) and the instability of a given
mode is restricted to a layer about the surface y = ys where k · B0(ys) = 0. Thus,
the magnetic field has two stabilizing roles. Any bending of the field lines resists
the growth of the perturbation and magnetic shear limits the region of instability
when it occurs.

Surfaces where k · B0 = 0 play a crucial role in stability analysis quite generally
and are called resonant surfaces. In particular, we note that (4.111) has a singular
point wherever

ρ0ω
2 − (k · B0)

2/µ0 = 0

Since (k · B0)
2 ≥ 0, such singularities occur only for stable configurations but at

marginal stability (ω = 0) they occur at the resonant surfaces k · B0 = 0. As might
be expected, the instability tends to be localized around the resonant surfaces.

4.7.2 Pressure-driven instabilities

Another interchange instability, discussed by Kruskal and Schwarzschild (1954),
may arise in plasma contained by a magnetic field. Here the pressure gradient
plays a role akin to gravity in the Rayleigh–Taylor instability. It is clear from
(4.105) that if the pressure gradient ∇P0 and magnetic curvature κ act in the same
direction relative to ξ⊥ a pressure-driven instability may arise. On the other hand,
if (ξ⊥ · ∇P0)(ξ⊥ · κ) < 0 this term is stabilizing. Since ∇P0 is generally directed
towards the centre of the plasma, the stability condition requires that magnetic cur-
vature be directed outwards (i.e. away from the plasma centre). This confirms our
earlier observation that cusp fields have favourable curvature whilst those which are
concave towards the plasma have unfavourable curvature. The sausage instability
is an example of an unstable interchange mode resulting from unfavourable cur-
vature. A simple argument similar to that used for the Rayleigh–Taylor instability
allows us to find a stability condition for interchange perturbations. We consider a
cross-section of the plasma perpendicular to the field lines (again assumed straight)
and perturb it by interchanging two flux tubes of equal strength. This leaves the
total magnetic energy unchanged but, in general, alters the internal energy of the
plasma because both the pressure and the volume may change. The plasma initially
in flux tube 1 with pressure P1 and volume V1 goes to the position of flux tube 2
with volume V2 and, by the adiabatic gas law, pressure P1(V1/V2)

γ . Thus, the
change in internal energy for flux tube 1 is

[P1(V1/V2)
γ V2 − P1V1]/(γ − 1)
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Similarly, the change for flux tube 2 is

[P2(V2/V1)
γ V1 − P2V2]/(γ − 1)

and letting P2 = P1 + δP , V2 = V1 + δV the total change is, to lowest order in
δP, δV,

δW = γ P1(δV )2/V1 + δPδV

A sufficient condition for stability is, therefore,

δPδV > 0 (4.114)

Now if S(l) is the cross-sectional area of a flux tube its volume is
∫

S dl, where dl
is the line element and the integral is taken along the length of the tube. Also, since
the flux is constant along the tube, i.e. B(l)S(l) = �, we may write

V = �

∫
dl

B(l)

Thus, if δP < 0 as we move away from the centre of the plasma we require

δ

∫
dl

B(l)
< 0 (4.115)

which says that the magnetic field, averaged along a flux tube, must increase as
we move away from the centre of the plasma. This is the minimum B stability
condition, so called since it requires the plasma to occupy the region where the
average field is minimum.

In two- and three-dimensional configurations there is usually a mixture of
favourable and unfavourable curvature; toroidal confinement devices, for example,
tend to have favourable curvature on the inside of the torus and unfavourable
curvature on the outside. A flux tube may, therefore, experience good and bad
curvature as it winds around the torus. Perturbations will tend to grow in regions
of unfavourable curvature causing the plasma in such regions to balloon out, so
giving rise to the name ballooning instabilities. Since, by definition one might
say, ballooning instabilities are not controlled by a minimum B (or magnetic well)
configuration they must be avoided by keeping the plasma pressure down, i.e.
stability thresholds for ballooning instabilities set maximum values for β.

Of course, magnetic shear may also be used to stabilize pressure-driven insta-
bilities. The simple argument leading to (4.114) no longer applies when the field
is sheared and, as with the Rayleigh–Taylor instability, the instability is localized
near the resonant surfaces. For cylindrical plasmas, where perturbations take the
form (4.75), the resonant surfaces occur at r = rs where

m

rs
Bθ (rs)+ k Bz(rs) = 0
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and linear stability analysis involves the minimization of δW around r = rs for
any given m and k. From such an analysis (see Wesson (1981)) one can show that a
cylindrical pinch is stable provided (q ′/q)2 > −(8µ0 P ′/r B2

z )where q is the safety
factor defined by (4.29). This is Suydam’s criterion which says that the magnetic
shear must be large enough to overcome the destabilizing effect of the pressure
gradient.

4.8 Ideal MHD waves

One of the most interesting aspects of a plasma in a magnetic field is the great
variety of waves which it can support. A more complete treatment of waves in
plasmas is deferred to Chapter 6. However, a discussion of ideal MHD at this
point would be incomplete without some account of the natural waves which may
propagate through the plasma. We may expect such waves to be widespread in
space plasmas, where ideal MHD is in general a valid model, and it was in this
context that Alfvén first discovered and described the nature and properties of these
waves.

In order to concentrate on the basic properties we avoid the complications of
boundary conditions by assuming an infinite plasma. Likewise, for simplicity, we
assume that the unperturbed plasma is static and homogeneous. Thus, our starting
point is a plasma with

ρ = ρ0 P = P0 u = 0 j = 0 B = B0ẑ (4.116)

where ρ0, P0, and B0 are constants.
As in our stability investigations we assume a small perturbation of the system

so that in the linear approximation we arrive, as before, at (4.67) but with the
simplification that now, in (4.68), ∇P0 = 0 and ∇ × B0 = 0. Also, since the
plasma is infinite we may carry out a Fourier analysis in space as well as time, i.e.
we assume ξ(r, t) =∑k,ω ξ(k, ω)e−i(k·r−ωt). Thus (4.67) reads

ρ0ω
2ξ = kγ P0(k · ξ)+ 1

µ0
{[k × (k × (ξ × B0))] × B0} (4.117)

Without loss of generality we can choose Cartesian axes such that k = k⊥ŷ+k‖ẑ
and then after expanding the vector products the three components of (4.117) are

(ω2 − k2
‖v

2
A)ξx = 0 (4.118)

(ω2 − k2
⊥c2

s − k2v2
A)ξy − k⊥k‖c2

s ξz = 0 (4.119)

−k⊥k‖c2
s ξy + (ω2 − k2

‖c2
s )ξz = 0 (4.120)

where cs = (γ P0/ρ0)
1/2 is the sound speed and vA = (B2

0/µ0ρ0)
1/2 is the Alfvén
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Fig. 4.31. Shear Alfvén wave.

speed. The condition for a non-trivial solution (ξ �= 0) is that the determinant of
the coefficients should be zero and this gives the dispersion relation∣∣∣∣∣∣

(ω2 − k2
‖v

2
A) 0 0

0 (ω2 − k2
⊥c2

s − k2v2
A) −k⊥k‖c2

s

0 −k⊥k‖c2
s (ω2 − k2

‖c2
s )

∣∣∣∣∣∣ = 0

i.e.

(ω2 − k2
‖v

2
A)(ω

4 − k2(c2
s + v2

A)ω
2 + k2k2

‖c2
sv

2
A) = 0 (4.121)

with solutions

ω2 = k2
‖v

2
A (4.122)

ω2 = 1

2
k2(c2

s + v2
A)[1 ± (1 − δ)1/2] (4.123)

where

δ = 4
k2

‖
k2

c2
sv

2
A

(c2
s + v2

A)
2

(4.124)

Since 0 ≤ δ ≤ 1, all three solutions are real and the waves propagate without
growth or decay. There is neither dissipation to cause decay nor free energy (cur-
rents) to drive instabilities.

Taking each mode in turn, (4.122) is the dispersion relation for the shear Alfvén
wave. As is clear from (4.118)–(4.120), this mode is decoupled from the other two
and its displacement vector ξx x̂ is perpendicular to both B0 and k, i.e. the wave,
illustrated in Fig. 4.31(a), is transverse. Note that, from (4.62) and (4.64), B1 and
u = u1 are in the same direction as ξ. Since k · ξ = 0, we see that ρ1 and P1 are
both zero, i.e. the wave is incompressible. It propagates, as shown in Fig. 4.31(b),
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like waves along plucked strings under tension, the strings being the magnetic field
lines. In fact Alfvén, using the analogy with elastic strings, pointed out that the
phase velocity obtained is exactly what one would expect if one substitutes the
magnetic tension B2

0/µ0 for T in the expression ω/k = (T/ρ0)
1/2 for the phase

velocity of transverse waves along strings with line density ρ0 and tension T . The
energy in the wave oscillates between plasma kinetic energy 1

2ρ0u2
1 and perturbed

magnetic energy B2
1/2µ0. This confirms the statement about the first term in the

integrand of δWP in (4.105).
The two remaining modes have ξx = 0 = ux . Observing that the minimum

(maximum) value of ω2, when we take the plus (minus) sign in (4.123), is given
by δ = 1, it follows that ωF ≥ k‖vA ≥ ωS, where ωF,S are the fast and slow wave
frequencies corresponding to the plus and minus signs, respectively. Since both
the magnetic (Alfvén) and acoustic wave speeds appear in the dispersion relation
for these waves and they are compressional they are known as the fast and slow
magnetoacoustic waves. To discuss these modes we note, from (4.119) and (4.120),
that they decouple when propagation is either parallel or perpendicular to B0.

For perpendicular propagation (k‖ = 0) the fast wave has

ω2 = k2(c2
s + v2

A)

and the displacement vector ξ = ξy ŷ is parallel to k = k⊥ŷ. From (4.62), B1 is
parallel to B0 so the compression of the magnetic field combines with that of the
plasma (P1 ∝ k · ξ) to drive the wave. The slow wave does not propagate in this
direction (ω = 0).

In the case of parallel propagation (k⊥ = 0), one mode has ω = kvA and ξy �= 0
and the other, ω = kcs and ξz �= 0. In this limit the magnetoacoustic waves have
separated into a compressional Alfvén wave and an acoustic wave. Which mode is
fast and which slow depends on the relative magnitudes of vA and cs but usually
β < 1 in which case the acoustic wave is the slow mode. In the acoustic wave the
displacement vector is along B0 so the field plays no role; the wave is driven by the
fluctuations in gas pressure. On the other hand, in the compressional Alfvén wave
k · ξ ∼ k · u ∼ ∇ · u = 0 so that the compressibility of the plasma has no effect.

For propagation at arbitrary angles to the magnetic field, these modes are cou-
pled. In the low β limit cs � vA so that ωF ≈ kvA and ωS ≈ k‖cs. Thus, for the
fast mode, from (4.120) we see that |ξz|/|ξy| ∼ β � 1, i.e. the plasma motion is
almost perpendicular to the field lines. The oscillation in energy is between plasma
kinetic energy and field energy (compression and tension). Likewise, for the slow
mode in the low β limit, from (4.119) we see that |ξy|/|ξz| ∼ β � 1 so the plasma
motion is almost parallel to B0. Here energy oscillates within the plasma between
kinetic and internal energy.
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Exercises

4.1 Consider the steady flow u = u(z)x̂ of a viscous conducting fluid between
infinite horizontal planes at z = 0 and z = 2d driven by the motion of the
upper plane with velocity V0x̂ relative to the fixed plane at z = 0. Given
that the flow, known as Couette flow, is subject to a constant applied mag-
netic field B0ẑ but that there is no electric field (short-circuit condition),
verify that the solution of the equation set

ρ
Du
Dt

= j × B − ∇P + µ

[
∇2u + 1

3
∇(∇ · u)

]
j = σ(u × B)

= ∇ × B/µ0

is u(z) = V0 sinh(H z/d)/ sinh 2H where H = B0d(σ/µ)1/2 is the Hart-
mann number. (Assume that all variables depend only on z).

Consider the limits H → 0 and H → ∞ to show that as B0 → 0
the hydrodynamic flow u(z) = V0z/2d is recovered, whilst as µ → 0
the inviscid solution (u(z) ≡ 0) is not retrieved but the flow is effectively
restricted to a boundary layer at the moving plane, the thickness of which
tends to zero as H−1.

4.2 Derive the equation of energy conservation (4.3) from the ideal MHD
equations in Table 3.2.

4.3 Show that the Bennett electron density profile ne(r) = ne(0)[1+(r/r0)
2]−2

in a Z -pinch corresponds to uniform electron flow velocity across the
plasma column. Evaluate the scale length r0.

Using (4.23)–(4.28) show that the pressure, magnetic field and current
profiles are given by

P(r) = µ0 I 2

8π2

r2
0

(r2 + r2
0 )

2

B(r) = µ0 I

2π

r

r2 + r2
0

j (r) = I

π

r2
0

(r2 + r2
0 )

2

(E4.1)

Sketch these profiles and show that for r > r0 both the plasma and mag-
netic pressure gradients are negative. It is the magnetic tension −B2/µ0r ,
acting against this combined outward pressure, which constrains the
plasma in the equilibrium configuration.
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4.4 Solov’ev (1968) found an exact axisymmetric solution to the Grad–
Shafranov equation (4.44) with

P = −|P ′|ψ + P0

F2 = 2γ (1 + α2)−1|P ′|ψ + F2
0

where P0 and (F0/R0) denote the pressure and magnetic field on the mag-
netic axis R = R0, Z = 0, ψ = 0. Check that with this choice a solution
to the Grad–Shafranov equation (setting µ0 = 1) is

ψ = |P ′|
2(1 + α2)

[
(R2 − γ )Z 2 + α2

4
(R2 − R2

0)
2

]

Setting R − R0 = x � R0 show that the magnetic surfaces have
approximately elliptical cross-sections

[x + δ(x, Z)]2 +
(

R2
0 − γ

α2 R2
0

)
Z2 = x2

0

Determine the Shafranov shift δ(x, Z) which has the effect of shifting
the magnetic axis, compressing the magnetic surfaces on the outside and
relaxing their separation on the inside (see Fig. 4.19(c)).

4.5 Starting from the expression

WB =
∫

V
(B2/2µ0)dτ

for the magnetic energy in a volume V , show that δW = 0 leads to∫
dτB · (∇δα × ∇β + ∇α × ∇δβ) = 0

if B = ∇α × ∇β, where the Clebsch variables α and β are constant on
the bounding surface.

Integrate this equation by parts to obtain∫
dτ {[∇β · (∇ × B)]δα − [∇α · (∇ × B)]δβ} = 0

and hence deduce the coupled differential equations (4.51) for α and β.
4.6 A simple model represents a sunspot as a flux cylinder in which B =

B(r)ẑ, g = −gẑ and with radially decreasing magnetic pressure and in-
creasing plasma pressure. Starting from the magnetohydrostatic condition
(4.52) and assuming that the field vanishes at the edge of the sunspot, show
that the pressure balance condition is

Pint(r, z)+ B2(r)

2µ0
= Pext(z)
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where Pint and Pext are the internal and external plasma pressures, respec-
tively. Show also that the density

ρ = −1

g

dPext

dz

is a function of z only. Hence, deduce the temperature ratio

Tint(r, z)

Text(z)
= Pint(r, z)

Pext(z)
= 1 − B2(r)

2µ0 Pext(z)

showing that a vertical magnetic field may produce a temperature deficit
inside the sunspot.

4.7 By taking the scalar product of (4.67) with ξ∗ and subtracting its complex
conjugate show that

[ω2 − (ω∗)2]
∫
ρ0|ξ|2 dr =

∫
[ξ∗ · F(ξ)− ξ · F(ξ∗)]dr

Deduce that the self-adjointness of F(ξ) implies that the eigenvalues ω2

are real.
From the equation

ω2 = δW (ξ∗, ξ)/K (ξ∗, ξ)

where δW (ξ∗, ξ) = − 1
2

∫
ξ∗ · F(ξ)dr and K (ξ∗, ξ) = 1

2

∫
ρ0|ξ|2 dr, show

that the varation ξ → ξ + δξ, ω2 → ω2 + δω2, for small δξ and δω2, leads
to

δω2 = δW (δξ∗, ξ)+ δW (ξ∗, δξ)−ω2[K (δξ∗, ξ)+ K (ξ∗, δξ)]/K (ξ∗, ξ)

Hence, using the self-adjoint property of F and setting δω2 = 0, corre-
sponding to ω2 being an extremum, show that∫

dr{δξ∗ · [F(ξ)+ ω2ρ0ξ] + δξ · [F(ξ∗)+ ω2ρ0ξ
∗]} = 0

and from this deduce the equivalence of the variational principle discussed
in Section 4.6 and the normal mode eigenvalue equation (4.67).

4.8 By following the steps indicated in the text derive (4.101) from (4.96).
Show further, by separating vector quantities into parallel and perpen-

dicular components, X = X‖b + X⊥, where b is a unit vector in the
direction of the magnetic field, that the expression (4.102) for δWp may
be written in the form (4.105).

4.9 Show that the same procedure used to derive (4.112) leads to the dispersion
relation (4.113) for the case of an unmagnetized plasma of constant density
ρ0 supported by a constant magnetic field B0.
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4.10 Consider a plasma with a perturbed rippled boundary (see Fig. 4.29(a))
containing a uniform magnetic field B0 = B0ẑ in a gravitational field.
According to Section 2.3.1 a positive ion is then subject to a gravitational
drift along −x̂. Sketch the effect of this drift on the charge on adjacent
sides of the ripple, including the direction of the induced electric field δE.
Show that the resultant δE × B0 drift acts in such a way as to amplify the
original rippled perturbation.

4.11 Magnetic buoyancy can lead to instability. By considering an isolated flux
tube rising adiabatically along the z-axis in a conducting fluid containing
a magnetic field B = B0(z)x̂, show that this rise becomes unstable if the
field decays with z faster than the density ρ, i.e. if d(B0/ρ)/dz < 0.

The magnetic buoyancy instability is a special case of the Rayleigh–
Taylor instability. How is the instability condition modified when curvature
of the field lines is taken into account (see Parker (1979))?

4.12 Show that if the radius of curvature Rc (see Section 2.4.2.) and g are in the
same direction, the drift vB, given by (2.24), is equivalent to a gravitational
drift with g = (v2

⊥ + 2v2
‖)/2Rc.

By averaging over a velocity distribution for a thermal plasma show that
this orbit theory result leads to the condition g = 2P/ρRc where P and ρ
denote the ion pressure and density respectively.

By analogy with the result from Exercise 4.10, a plasma in a curved
magnetic field should show a similar tendency for charge to build up and
hence become unstable. Deduce that instability occurs when the plasma
is confined by a magnetic field that is concave towards the plasma. By
analogy with the Rayleigh–Taylor growth rate show that the growth rate of
this flute instability is γ = (2∇ P/ρRc)

1/2.

4.13 Show that Suydam’s criterion in Section 4.7.2. can be expressed in the
form s2 > (8r2/B2

θ )κc∇ P , where s = d ln q/d ln r is the shear parame-
ter and κc = −B2

θ r̂/B2r is the field line curvature vector in cylindrical
geometry.

For toroidal geometry substitute κ = κc + κt where κt = −R̂/R is the
curvature of the toroidal magnetic field. Show that although κt ∼ κc(R/r),
κt is along ∇P on the outside of the torus but in the opposite direction on
the inside and hence, following a field line, destabilizing and stabilizing
contributions alternate so that the effect of toroidal curvature averages out
to lowest order.

Show that by going to next order and averaging over a field line, assum-
ing concentric circular flux surfaces, one finds an approximate toroidal
curvature of (1 − q2/2)κc. A rigorous calculation gives in fact (1 − q2)κc.
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Using this result write down the toroidal analogue of Suydam’s criterion
(see Biskamp (1993)).

4.14 In practice since most problems in MHD have to be solved numerically it
is often preferable to integrate the MHD equations numerically from the
start. A simple introduction to computational MHD is provided by a one-
dimensional Lagrangian code. In a Lagrangian finite difference scheme the
grid points of the finite difference scheme move with the fluid. This has the
advantage that the advective term in the MHD equations is replaced by the
Lagrangian time derivative which means that the complication inherent in
these terms is transferred to the equation of motion for the mesh dx/dt =
v. In other words in a Lagrangian scheme one labels a differential mass of
fluid by its position at t = 0, say x0(t = 0) and then determines x as well
as the velocity, pressure, density etc. of this same differential mass of fluid
as time evolves.

Defining a space mesh with mesh points j moving with the fluid veloc-

ity, i.e. xn+1
j = xn

j + v
n+ 1

2
j �t and the cell width by �n+1

j+ 1
2

= xn+1
j+1 − xn+1

j

the MHD equations integrated on this mesh have the form:

d

dt
(X�) = 0

d

dt
(Pρ−γ ) = 0

dv

dt
= − 1

ρ

∂

∂x

(
P + B2

2µ0

)

where X = (ρ, B).
The fluid properties are expressed as cell quantities defined at the centre

of each cell, i.e.

Xn+1
j+ 1

2
= Xn

j+ 1
2

(
xn

j+1 − xn
j

)
(

xn+1
j+1 − xn+1

j

) Pn+1
j+ 1

2
=

ρn+1

j+ 1
2

ρn
j+ 1

2



γ

Pn
j+ 1

2

The pressure is then used to recalculate the velocity of the boundary for
each cell:

v
n+ 1

2
j = v

n− 1
2

j − 2�t(
ρn

j+ 1
2
+ ρn

j− 1
2

)
(

P∗n
j+ 1

2
− P∗n

j− 1
2

)
(

xn
j+ 1

2
− xn

j− 1
2

)
where P∗ = P + B2/2µ0. Not only is a one-dimensional Lagrangian
mesh simple conceptually, but the mesh itself reflects fluid behaviour
through successive bunching and spreading of cell boundaries giving rise
to sound waves on the mesh. As wave profiles steepen to form shocks the
Lagrangian mesh automatically accumulates mesh points in the region of
the shock front which is beneficial for spatial resolution.
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Fig. 4.32. Time-frame from a 1D Lagrangian code output showing density ρ,
velocity v, and magnetic field B profiles as functions of radius, representing a
shock imploding on a plasma slab from the right (arbitrary units).

The project involves using the Lagrangian scheme outlined to model
shock implosion leading to the formation of a pinch. A shock is applied at
the right-hand boundary of a plasma slab and propagates inwards. Choose
suitable initial values for plasma parameters and integrate the equations
of motion to determine ρ, v and B as the shock propagates inwards. The
profiles in Fig. 4.32 are typical.

However, your output is likely to show small scale oscillations at the
shock front which are computational rather than physical. Representing a
shock on a difference mesh presents problems since by definition a shock
front is steep and short wavelengths cannot be represented on the mesh.
We shall find in Chapter 5 that shock thickness is determined by viscosity.
Within the framework of ideal MHD we have to resort to introducing an
artificial viscosity which has the effect of suppressing discontinuities with
a wavelength less than the step size of the space mesh, while leaving longer
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wavelengths unaffected. This artifice serves to remove oscillations that
otherwise appear in the region of shock compression. To make this change

we replace P
n+ 1

2

j+ 1
2

by

(
P

n+ 1
2

j+ 1
2

+ r
n+ 1

2

j+ 1
2

)
where r denotes the numerical

viscosity. The particular representation adopted for the artificial viscosity
is not critical. Numerical viscosity was included in the scheme used to
produce the snapshots of the implosion in Fig. 4.32.
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Resistive magnetohydrodynamics

5.1 Introduction

Although ideal MHD is often a good model for astrophysical and space plasmas
and is widely employed in fusion research it is never universally valid, for the
reasons discussed in Section 4.1. In this chapter we consider some of the most
important effects which arise when allowance is made for finite resistivity and, in
the case of shock waves, other dissipative mechanisms. Even though the dissipation
may be very weak the changes it introduces are fundamental. For example, finite
resistivity enables the plasma to move across field lines, a motion forbidden in ideal
MHD. Usually, the effects of this diffusion are concentrated in a boundary layer so
that mathematically the problem is one of matching solutions, of the non-ideal
equations in the boundary layer and ideal MHD elsewhere. On the length scale of
the plasma the boundary layer may be treated as a discontinuity in plasma and field
variables and, depending on the strength of the flow velocity, this discontinuity
may appear as a shock wave.

A comparison of Tables 3.1 and 3.2 reveals that the difference between resistive
and ideal MHD is the appearance of extra terms proportional to the plasma resis-
tivity, η ≡ σ−1, in the evolution equations for P and B. Although one is tempted,
therefore, to think of ideal MHD as the zero resistivity limit we know from the
discussion in Section 3.3.2 that it is properly regarded as the infinite magnetic
Reynolds number or large length scale limit, an observation that arises from a
comparison of the diffusion and convection† terms in the induction equation

∂B
∂t

= η

µ0
∇2B + ∇ × (u × B) (5.1)

The characteristic times for resistive diffusion and convection are, respectively,
τR ∼ µ0L2/η and the Alfvén transit time τA ∼ L/vA, where, anticipating that
we shall be interested mainly in flows dominated by the magnetic field, we have

† The convection term is known also as the advection term.

140
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Table 5.1. Characteristic lengths, times and Lundquist numbers

LH (m) τR (s) τA (s) S

Arc discharge 10−1 10−3 10−3 1
Tokamak 1 1 10−8 108

Earth’s core 106 1012 105 107

Sunspot 107 1014 105 109

Solar corona 109 1018 106 1012

approximated |u| by the Alfvén speed vA and L is an appropriate length scale. With
this choice and L = LH, the hydrodynamic length scale, the magnetic Reynolds
number is usually denoted by S = τR/τA and referred to as the Lundquist number.
For high temperature laboratory plasmas S is typically 106–108 and several orders
of magnitude greater still for astrophysical plasmas. Table 5.1 shows characteristic
values for various plasmas.

Some of these time scales at first sight look rather surprising. For example, they
indicate that the diffusion time for a sunspot is millions of years when we know
that sunspots seldom last longer than a few months. By contrast, they suggest that
the Earth’s magnetic field should have diffused away relatively early in its lifetime.
The fallacy comes from equating diffusion time with lifetime. The Earth’s field
persists because some regenerative process is at work compensating for diffusive
decay and sunspots disappear on a time scale governed, not by the slow diffusion
of their fields through the photosphere, but by some much faster mechanism. How
do these other physical processes come into effect when the very large values of
S in Table 5.1 suggest that ideal MHD is a more than adequate approximation for
fusion and space plasmas?

The answer to this question is twofold. First, we note that S = µ0vAL/η and
we have used L = LH in Table 5.1. Then we must remember that the dimensional
comparison of diffusion and convection terms is a crude argument. If, somewhere
in the plasma, the convection term vanishes there will be a local region in which
the diffusion term, however small, will come into play. Thus, the significance of
large S is not that resistivity is entirely negligible but rather that, compared with
LH, the length scale of the region in which it need be considered is very small.
In other words, although ideal MHD may be valid for most of the plasma, there
can be narrow boundary layers such as current sheets, in which we must apply
resistive MHD. We shall see that within such regions plasma relaxation involves the
reconnection of magnetic field lines, generally reducing a complex field topology
to one with simpler connectivity, thereby enabling the system to arrive at a lower
energy state. These topological changes in the magnetic field take place on a time
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Fig. 5.1. Magnetic reconnection in slab plasma.

scale intermediate between τA and τR. Such fast reconnections taking place at
current sheets are vital for violent events like solar flares on the one hand and
major disruptions in tokamaks on the other. The concept of relaxation of stressed
magnetic fields and energy release in one form or other underpins much of the
discussion in this chapter.

5.2 Magnetic relaxation and reconnection

To understand how magnetic field changes occur in a real plasma with small but
finite resistivity let us consider the simplest model of a slab plasma, as in Fig.
5.1(a), in which the field is slowly varying with y, decreasing in magnitude, re-
versing sign, and then increasing again. The plane (y = 0) in which B = 0 is
called the neutral sheet. If the field lines define the z-axis, the current j is parallel
to the x-axis and the Lorentz force j×B acts downwards for y > 0 and upwards for
y < 0. In ideal MHD, either these forces are opposed by a plasma pressure gradient
maintaining equilibrium or plasma and field lines will move together towards the
y = 0 plane until these forces are in balance. However, with the introduction of
finite resistivity, no matter how small, the field is no longer frozen into the plasma
and slippage of field lines across the plasma allows breaking of the field lines with
reconnection to lines of opposite polarity as shown in Fig. 5.1(b). This may happen
at various points along the neutral lines, as depicted in Fig. 5.2, giving rise to
so-called magnetic islands, i.e. sets of nested magnetic surfaces each with its own
magnetic axis. The dashed line in Fig. 5.2 is the separatrix marking the boundary
between the regions of different field topology. The topological change takes place
because the magnetic energy associated with the magnetic islands is less than that
in the original, MHD equilibrium configuration. We can readily imagine this if we
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B

Fig. 5.2. Magnetic islands.

think of the field lines as stretched strings; the tension in them has been reduced
because breaking and reconnecting allows them to contract around the island axes.
The stored (potential) energy in the final configuration is less than in the original
configuration. The null-points of the magnetic field define O-points, at the axes of
the magnetic islands, and X-points, at the intersections of the separatrix.

Some dissipation is essential for any system to attain a lower energy state from
its initial state by a relaxation process and Taylor (1974) provided a mathematical
basis for this by applying a modification of Woltjer’s theorem to plasmas with small
but finite resistivity. As discussed in Section 4.3.4, Woltjer showed that the helicity,
K = ∫

V A · B dτ , of an ideal plasma is invariant when the integral is taken over
the volume V of a closed system. It follows that K is conserved for every volume
enclosed by a flux surface, i.e. every infinitesimal flux tube. This amounts to an
infinite set of integral constraints ensuring a one-to-one correspondence between
initial and final flux surfaces. Clearly, this no longer holds in a plasma with finite
resistivity since the continual breaking and reconnecting of field lines destroys the
identity of infinitesimal flux tubes. Taylor’s hypothesis states that only the helicity
associated with the total volume of the plasma is conserved. This replaces an
infinite set of constraints by a single constraint and allows the system access to
lower energy states which in ideal MHD are forbidden. It means, also, that the final
state of the plasma is largely independent of its initial conditions. Indeed a feature
of certain toroidal discharges is that after an initial, violently unstable phase, the
discharge relaxes to a grossly stable, quiescent state which depends only on a few
external parameters and not on the history of the discharge. The characteristics
of reversed field pinches, in particular, may be interpreted on the basis of Taylor’s
hypothesis. By contrast, relaxation does not play such a prominent role in tokamaks
on account of the strong toroidal magnetic field.

Assuming that the plasma is contained by perfectly conducting walls the only
flux surface that retains its identity is the plasma boundary. Taylor argued, there-
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fore, that the energy should be minimized subject to the single constraint of con-
stant total magnetic helicity, i.e.

K0 =
∫

V0

A · B dτ = const.

where V0 is the total plasma volume. If the plasma is almost ideal and its kinetic
energy is negligible compared with the magnetic energy (β ≈ 0) one arrives, as in
Woltjer’s theorem, at the condition for force-free fields

∇ × B = αB (5.2)

but with the fundamental difference that here α is a constant, related to K0, with the
same value on all field lines. In view of the assumed boundary conditions (see Sec-
tion 4.3.4), a second constant determining the solution of (5.2) is the total toroidal
flux. For a linear discharge with cylindrical symmetry (∂/∂θ ≡ ∂/∂z ≡ 0)) we
have from (5.2)

Br (r) = 0 αBθ = −dBz

dr
αBz = 1

r

d

dr
(r Bθ )

giving

d2 Bz

dr2
+ 1

r

dBz

dr
+ α2 Bz = 0

This is Bessel’s equation of order zero with the result that

Bz(r) = B0 J0(αr) Bθ (r) = B0 J1(αr) (5.3)

where J0 and J1 are Bessel functions of the first kind of order zero and one,
respectively, and B0 is the value of the magnetic field on the axis. Since J0(x)
changes sign at x = 2.4 it follows that field reversal will occur if, in the relaxed
state, the plasma radius a is such that αa > 2.4.

To appreciate the implications of this condition in practice it is helpful to in-
troduce two measurable quantities, the field reversal parameter F , which is the
normalized toroidal field at r = a, i.e.

F = Bz0(a)/〈Bz〉
where 〈Bz〉 denotes the average toroidal magnetic field and the pinch parameter θ ,
which represents the normalized toroidal current,

θ = Bθ0(a)

〈Bz〉 = aI

2ψz
= αa

2

where ψz is the toroidal flux and we have set µ0 = 1. It follows using (5.3) that

F = αa

2

J0(αa)

J1(αa)
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Fig. 5.3. Measured (F–θ) characteristics: �, Zeta; •, HBTX; ——, Di Marco; and the
theoretical curve (dashed line).

Figure 5.3 plots F as a function of θ . We see that as the current increases, Bz(a)
decreases and changes sign at θ = 1.2, corresponding to field reversal. Figure 5.3
also shows a measured (F–θ) characteristic (Di Marco (1983)) which, while
broadly in agreement, lies above the theoretical curve. The discrepancy between the
characteristics showing less pronounced field reversal in practice than predicted, is
generally attributed to the behaviour of the current density in the boundary region.
A relaxed state with α = j · B/B2 constant is inconsistent with the physical
boundary condition j = 0 at the plasma edge. From Fig. 5.3 we see also that
the current does not increase beyond θ ∼ 1.5 (i.e. αa ∼ 3) which is in agreement
with the predicted value (αa = 3.1). Further increasing the voltage does not result
in higher current. Data from a high-beta toroidal pinch experiment (HBTX) and
from Zeta, analysed by Bodin and Newton (1980), provide additional support for
the relaxation hypothesis.

5.2.1 Driven reconnection

A distinction may be drawn between spontaneous and driven reconnection. What
has been considered so far is the relaxation of plasma in reversed field pinches to
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a state of lower energy by magnetic field reconnection. Examples of spontaneous
reconnection arising in other magnetically contained plasmas crop up later in this
chapter, as for instance in Section 5.3.1, where we shall see that reconnection is
responsible for the tearing mode instability. However a less benign form of recon-
nection, sometimes referred to as driven reconnection, may take place. The most
dramatic events of this kind occur in nature where plasmas collide, as happens in
solar flares and when the solar wind strikes the Earth’s magnetosphere. It is possible
to distinguish the two types of magnetic reconnection by a qualitative argument. In
the spontaneous case if we suppose that a current sheet is present initially then
referring to (5.1) we may use the Lundquist number as an index of the spontaneous
reconnection rate Msp where

Msp = S−1 � 1

The need for fast reconnection first became evident in attempts to explain the
explosive onset of solar flares. Through fast reconnection the magnetic field can
change its morphology and so release energy. The importance of neutral points
at which the field vanishes was first realized by Giovanelli (1947) and stressed
by Dungey (1953) who showed that rapid dissipation of the magnetic field was
possible at X-type neutral points. Sweet (1958) noted that energy release from a
magnetic field requires the field to be stressed in some way and the model used
to represent this was one in which oppositely directed fields collide. Figure 5.4
shows schematically magnetic fields being pushed together by flows into a narrow
region. In the flow regions the resistivity is low and hence the magnetic field is
frozen in the flow. The two regions are separated by a current sheet since the
reversal of the magnetic field B requires a current to flow in the thin layer sep-
arating them. Within this layer resistive diffusion plays a key role. As the two
regions come together the plasma is squeezed out along the field lines allowing
the fields to get closer and closer to the neutral sheet. At some stage the field lines
break and reconnect in a new configuration at a magnetic null-point, X . The large
stresses in the acutely bent field lines in the vicinity of the null-point result in a
double-action magnetic catapult that ejects plasma in both directions, with velocity
of O(vA). This in turn allows plasma to flow into the reconnection zone from the
sides.

This model was later developed by Parker (1963) and is generally referred to as
the Sweet–Parker model. A simple quasi-static argument using momentum balance
shows that the plasma is ejected at the Alfvén velocity, vA. Denoting the length of
the current sheet by 2L and the thickness by 2d , mass conservation dictates that
uL = vAd where u is the plasma flow speed in the direction normal to B. Under
steady state conditions the rate at which magnetic flux is convected towards the
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Fig. 5.4. Driven reconnection at X-type neutral point.

current sheet by the plasma flow is balanced by the rate of ohmic dissipation so
that

u = η/2µ0d (5.4)

This equation combined with the expression of mass conservation gives

u = vA/S1/2 d = L/S1/2 (5.5)

Identifying Mdr = u/vA = MA (the Alfvén Mach number) as a dimensionless
index for the driven reconnection rate, it follows from (5.5) that Mdr = S−1/2.
From Table 5.1 we find reconnection that is many orders of magnitude too slow
to characterize the evolution of solar flares. By the same token an inverse aspect
ratio d/L ∼ 10−6 implies a current sheet only metres thick for typical values of L ,
which is unrealistic.

The realization that the Sweet–Parker reconnection rate was much too slow
pointed to the need for incorporating some faster mechanism into the current sheet
model. Petschek (1964) attempted to do this by means of a slow MHD shock model
which again involves a current sheet but leads to a reconnection rate now effectively
independent of resistivity. Petschek reasoned that the magnetic fields would meet
at a relatively narrow apex, rather than across the entire region envisaged in the
Sweet–Parker model and found a maximum reconnection rate

Mdr ∼ (ln S)−1 (5.6)

This weak dependence on resistivity seemed to fit the bill and led to the model
being widely adopted despite a longstanding debate about its validity, over issues
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such as precisely how to define a Petschek regime and the boundary conditions
governing it. These misgivings were strengthened by insights gained from nu-
merical experiments on reconnection by Biskamp (1986). Biskamp (1993) has
given a detailed critique of the Petschek slow-shock model. On general grounds
Petschek’s model has been seen as counter-intuitive in that two plane regions of
highly conducting plasma with oppositely directed magnetic fields pushed together
might be expected to generate a flat current sheet configuration rather than the
cone required by the Petschek model. However Biskamp’s criticism centres on
the treatment of the diffusion region where a boundary layer solution, matching
the ideal MHD solution outside the diffusion zone to the resistive MHD solution
within, is required. Biskamp’s numerical experiments of driven reconnection do
not show a Petschek-like configuration in the small η limit. Although features
characteristic of slow shocks are confirmed by the simulations, Biskamp found
that as the reconnection rate increases, both the length and width of the diffusion
region increase, counter to Petschek’s predictions.

Whatever doubts persist over models for magnetic reconnection in solar flares,
observations by Innes et al. (1997) have provided the first direct evidence for
reconnection. They report ultraviolet observations of explosive events in the so-
lar chromosphere which point to the presence of oppositely directed plasma jets
ejected from small sites above the solar surface. Observations of these jets show
signs of some anisotropy in that jets directed away from the solar surface may
stream freely up to the corona while downward jets should suffer attenuation on
account of the increasing density of the chromosphere. The stream exhibiting a
blue shift, indicative of plasma flowing away from the solar surface, is of very
much greater extent than the red stream.

5.3 Resistive instabilities

The ability of a plasma, through magnetic reconnection, to reach lower energy
states means that ideal MHD stability theory needs re-examination. Modification
of the theory by the introduction of a small but finite resistivity leads to the dis-
covery of new instabilities. These resistive instabilities were first derived in the
seminal paper of Furth, Killeen and Rosenbluth (1963). In this paper the resistive
MHD equations were solved in the boundary layer in which S � 1 and field line
diffusion takes place; the ideal MHD equations were solved outside this region
and the solutions matched at the boundary. Three instabilities were discovered
with growth times much smaller than τR but much greater than τA. One of these,
the tearing instability, arises spontaneously while the others are driven instabili-
ties.
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Fig. 5.5. Coordinate axes for calculation of resistive instabilities.

A discussion of the original calculation may be found in Miyamoto (1989) and
accounts of both the linear and non-linear theory of resistive instabilities have been
given by Bateman (1978) and by White (1983). In what follows we make no at-
tempt to repeat details of the full calculation in the original paper but derive instead
the basic equations from which the linear dispersion relation is obtained and, in
the spirit of Wesson (1981), use heuristic arguments to determine the parametric
dependence of the linear growth rates.

The procedure followed is close to that used in Chapter 4, in discussing linear
stability in ideal MHD, first obtaining (4.67) and then (4.111) for the Rayleigh–
Taylor instability. We use the geometry illustrated in Fig. 5.5 and again assume
that equilibrium quantities vary only in the y direction. Incompressibility is also
assumed so that (4.107) holds. This is justified since the growth rates of the resistive
instabilities are very small on the hydromagnetic time scale τA and this means that
fluid and magnetic pressure changes tend to be compensating, having a negligible
effect on the dynamics of the instabilities. Two generalizations of the assumptions
used to derive (4.111) are required. However, one of these, the replacement of the
ideal by the resistive equation for P , turns out to be of no consequence since we
shall eliminate the ∇P term.

The other generalization is important since it introduces the driving term for one
of the resistive instabilities. We want to allow for variable resistivity in which case,
following the usual derivation of the induction equation from the Maxwell equation
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and Ohm’s law, we get

∂B
∂t

= −∇ × E

= ∇ × (u × B)− ∇ ×
(
η

µ0
∇ × B

)

= ∇ × (u × B)+ η

µ0
∇2B − ∇η × (∇ × B)

µ0
(5.7)

Since we are now treating η as a variable we need an extra equation to determine
it and for this we assume that it does not change within the fluid element but only
on account of its advection so that

Dη

Dt
= ∂η

∂t
+ u · ∇η = 0 (5.8)

Linearizing (5.7) and (5.8) we have

∂B1

∂t
= ∇ × (u1 × B0)+ η0

µ0
∇2B1

− ∇η1 × (∇ × B0)

µ0
− ∇η0 × (∇ × B1)

µ0
(5.9)

and
∂η1

∂t
= −u1 · ∇η0 (5.10)

Integrating (5.10) gives

η1 = −ξyη
′
0(y) (5.11)

where we have used (4.64) and the prime denotes differentiation with respect to y.
Now substituting (5.11) in (5.9), the y component is

∂By

∂t
= i(k · B0)uy + η0

µ0
∇2 By − i

(k · B0)
′

µ0
η′

0ξy

where we have dropped the subscript 1 on first-order variables. Assuming, as in
our discussion of the Rayleigh–Taylor instability, that all variables are of the form
A(y)eikz+γ t this equation may be integrated to obtain

By = i(k · B0)ξy + η0

µ0γ
(B ′′

y − k2 By)− i
(k · B0)

′

µ0γ
η′

0ξy (5.12)

This is one of the basic equations from which the dispersion relation is obtained.
The second equation comes from the linearized equation of motion which is

ρ0
∂u1

∂t
= −∇P1 + ρ1g + 1

µ0
(∇ × B1)× B0 + 1

µ0
(∇ × B0)× B1 (5.13)
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and the linearized continuity equation

∂ρ1

∂t
= −u1 · ∇ρ0 (5.14)

where, since incompressibility is assumed, we have used ∇ · u1 = 0. Integrating
(5.14) gives

ρ1 = −ξyρ
′
0

and substituting this in (5.13) the y and z components are

ρ0γ
2ξy = −dP1

dy
+ ξyρ

′
0g − 1

µ0
[Bx B ′

0x

+ Bz B ′
0z + B0x B ′

x + B0z(B
′
z − ik By)] (5.15)

ρ0γ
2ξz = −ik P1 + 1

µ0
(By B ′

0z − ik Bx B0x) (5.16)

Now we use (4.107) for ξz in (5.16) and substitute the resulting expression for
P1 in (5.15) to get

µ0γ
2[(ρ0ξ

′
y)

′ − k2ρ0ξy] + µ0k2gρ ′
0ξy =

k2(Bx B ′
0x + Bz B ′

0z + B0x B ′
x + B0z B ′

z − ik By B0z)− ik(By B ′
0z − ik Bx B0x)

′

Also, since

∇ · B1 = B ′
y + ik Bz = 0

we may eliminate Bz to obtain

µ0γ
2[(ρ0ξ

′
y)

′ − k2ρ0ξy] + µ0k2gρ ′
0ξy

= ik B0z

(
B ′′

y − k2 By − B ′′
0 By

B0z

)

= i(k · B0)

[
B ′′

y − k2 By − (k · B0)
′′

(k · B0)
By

]
(5.17)

which is the second basic equation relating ξy and By . It is easily verified that
putting η0 ≡ 0 in (5.12) and substituting By = i(k · B0)ξy in (5.17) reproduces
(4.111) with γ replacing iω.

5.3.1 Tearing instability

We begin our heuristic analysis of (5.12) and (5.17) by concentrating on the insta-
bility which arises by spontaneous reconnection of antiparallel field lines. The role
of the η′

0 term in (5.12), like that of the g term in (5.17), is to provide a driving force
for a resistive instability. For the moment let us drop both of these terms. Now, in
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the limit of vanishing resistivity we may ignore the diffusion term in (5.12) except
near the resonant surfaces where k · B0 ≈ 0 and we define the width εL of the
resistive boundary layer by equating the magnitudes of the convection and diffusion
terms in (5.12)

(k · B0)ξy ∼ η0

µ0γ
∇2 By ∼ η0γρ0

(k · B0)
ξ ′′

y

where the second approximation arises from (5.17). In this we have ignored the
variation (on scale length L) of equilibrium variables compared with the variation
(on scale length εL) of first-order variables and we have assumed kεL � 1, i.e.
the wavelength of the perturbation is much greater than the width of the boundary
layer. Then replacing ξ ′′

y by ξy/(εL)2 and (k ·B0) by εLk ·B′
0(0), since (k ·B0) = 0

at y = 0 but (k · B0)
′ �= 0, we get

εL ∼
(
γ η0ρ0

k2(B ′
0)

2

)1/4

(5.18)

Using (5.12) to eliminate ξy from (5.17) it is clear that in the boundary layer we
have a fourth-order differential equation for By whereas outside this region, where
the diffusion term is negligible, the equation reduces to second order. This is an
eigenvalue problem in which the eigenvalues, some of which lead to positive γ

and hence instability, are determined by matching the solutions at the boundaries
of the resistive region. Figure 5.6 shows schematically the variation of the key
quantities k · B0, (k · B0)

′, By and B ′
y . The point to note is the rapid change in B ′

y

across the boundary layer which, on the scale L of the whole plasma, appears as
a discontinous change at the resonant surface (y = 0) and hence a very large B ′′

y .
The actual change is determined by the eigenvalue but we shall take it as given in
terms of a dimensionless quantity, usually denoted by �′, and defined by

�′

L
= lim

ε→0

B ′
y(εL/2)− B ′

y(−εL/2)

By(0)
(5.19)

The same is true for ξ ′
y so the dominant terms in (5.17) are those in ξ ′′

y and B ′′
y and

we may write

µ0γ
2ρ0ξy

(εL)2
∼ (k · B0)B

′′
y

∼ (k · B0)
[B ′

y(εL/2)− B ′
y(−εL/2)]

εL

∼ (k · B0)
By(0)�′

εL2
(5.20)
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Fig. 5.6. Characteristic variation in tearing instability.

in the limit ε → 0 on using (5.19). Also, from (5.12), By ∼ (k ·B0)ξy so that (5.20)
becomes

µ0γ
2ρ0

(εL)
∼ (k · B0)

2�′

L
∼ k2(B ′

0)
2ε2L�′

and, substituting for εL from (5.18), we find the parametric dependence of the
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Fig. 5.7. Directions of current, field and velocity variations in the tearing instability.

growth rate γ to be

γ ∼
[

k2(B ′
0)

2(�′)4η3
0

µ4
0ρ0L4

]1/5

(5.21)

In terms of the resistive diffusion and convection times τR and τA, this may be
written as

γ ∼
[
(kL)2(�′)4

τ 2
Aτ

3
R

]1/5

∼ (kL)2/5S2/5(�′)4/5τ−1
R (5.22)

showing that the time scale for the development of this instability is two-fifths
Alfvénic (S/τR)

2/5 and three-fifths diffusive (1/τR)
3/5 and thus intermediate be-

tween these widely differing time scales. In a tokamak τR would be measured
typically in seconds, τA in tens of nanoseconds and γ−1 in milliseconds. This wide
separation of time scales justifies the simple order of magnitude analysis we have
used.

The growth rate increases with resistivity, η, and with shear, (k ·B0)
′. It is driven

by the Lorentz force which acts towards the resonant surface. Finite resistivity
allows field lines to break and reconnect at the nodal X points and then contract
towards the axes of the magnetic islands passing through the O points. Figure 5.7
shows the directions of current, field and velocity perturbations. Note that the
equilibrium current j0, maintaining the variation in B0(y), is in the x direction so
the growth of the instability increases the current at the O points and decreases it at
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the X points causing the current to break up into filaments. The characteristics of
this instability, namely the breaking of field lines and filamentation of the current,
are reflected in the name given to it, i.e. the tearing mode.

Finally, an important feature of this instability is its dependence on �′, the
discontinuity in B ′

y at the resonant surface. This means that the growth rate γ

is determined by the global state of the plasma and not by the local equilibrium
conditions at the resonant surface.

5.3.2 Driven resistive instabilities

Reintroduction of the η′
0 term in (5.12) and the g term in (5.17) allows additional

possibilities for instability since these terms appear in the eigenvalues. To find the
parametric dependence of the growth rates of these driven instabilities we need
only replace (5.20) by the corresponding approximations when the gravitational or
variable resistivity terms dominate the dynamics in the boundary layer.

In the case that the g term dominates we have

γ 2ρ0ξy

(εL)2
∼ k2gρ ′

0ξy

which, on substitution from (5.18), leads to

γ ∼
(
η0

ρ0

)1/3 (kgρ ′
0

B ′
0

)2/3

∼
[
(kL)2τ 2

A

τRτ
4
G

]1/3

∼ (kL)2/3S2/3

(
τA

τG

)4/3

τ−1
R (5.23)

where τG = (ρ0/gρ ′
0)

1/2 is a gravitational time scale. Keeping only the dominant
inertial and gravitational terms in (5.17), it is easily seen that ξy grows when ρ ′

0 > 0
or g · ∇ρ0 < 0, i.e. when there is an inverted density gradient as for the Rayleigh–
Taylor instability. This is the gravitational interchange mode. From (5.23) we see
that, unlike the tearing mode, this instability growth rate is reduced by increased
magnetic shear, and, since it depends on ρ ′

0(0), it is a local instability. A similar
resistive interchange instability may occur in a curved magnetic field when there is
a pressure gradient aligned with the curvature (see the discussion in Section 4.7.2).

Turning now to the third resistive instability, we first substitute for (B ′′
y − k2 By)

from (5.12) in (5.17) to bring the η′
0 term into the equation of motion and then

balance this term with the inertia term to obtain

µ0γ
2ρ0

(εL)2
ξy ∼ (k · B0)(k · B0)

′η′
0

η0
ξy
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Table 5.2. Resistive instability characteristics

Mode Range γ τR ε

Tearing kL < 1 (kL)2/5S2/5(�′)4/5 (kL)−2/5S−2/5(�′)1/5

Gravitational g · ∇ρ0 < 0 (kL)2/3S2/3(τA/τG)
4/3 (kL)−1/3S−1/3(τA/τG)

1/3

interchange
Rippling η′

0 �= 0 (kL)2/5S2/5(Lη′
0/η0)

4/5 (kL)−2/5S−2/5(Lη′
0/η0)

1/5

Hence,

γ ∼
[

k2(B ′
0)

2(η′
0)

4

µ4
0ρ0η0

]1/5

∼
[(

Lη′
0

η0

)4
(kL)2

τ 3
Rτ

2
A

]1/5

∼ (kL)2/5S2/5(Lη′
0/η0)

4/5τ−1
R

(5.24)
As for the other driven instability, this is local. To understand its physical origin

we linearize Ohm’s law, assuming E = 0, to get

η0j1 + η1j0 = u1 × B0

and substitute for η1 from (5.11) so that

η0j1 = ξyη
′
0j0 + u1 × B0

Thus, there is an additional (driving) force Fd due to the η′
0 term in j1, given by

Fd = ξy
η′

0

η0
j0 × B0 = (ξ · ∇η0)(j0 × B0/η0)

Assuming the variation of η0(y) is monotonic across the resonant surface whilst B0

changes sign, it follows that Fd is stabilizing on one side and destabilizing on the
other. Physically, it is clear that Fd is destabilizing on the side of lower resistivity
since this is where the current is increased. Thus, the fluid motion is amplified only
on the lower resistivity side and this creates a rippling effect which gives the mode
its name. The motion of the plasma in relation to the field lines for both driven
instabilities is illustrated in Fig. 5.8.

Table 5.2 lists the main parametric properties of the three resistive instabilities.
The tearing mode, because it is endemic and not dependent on an imposed driving
force and since its growth rate increases with magnetic shear, is usually the most
dangerous. Also, the other two are local instabilities with the resistive interchange
mode stabilized by shear and the rippling mode stabilized by high temperature
which increases the heat conductivity and invalidates the ‘adiabatic’ assumption
(5.8).
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Fig. 5.8. Plasma motion relative to field lines in (a) gravitational interchange mode and (b)
rippling mode.

5.3.3 Tokamak instabilities

Although we have considered only the simplest geometry of a slab plasma, the
tearing mode makes its appearance in cylindrical and toroidal plasmas in which
the resonant surfaces occur at the mode rational surfaces. In toroidal geometry in
which perturbations vary as A(r)ei(mθ−nφ), θ and φ being the poloidal and toroidal
angles and r the minor radius, the condition k · B0 = 0 becomes

m

r
Bθ − n

R0
Bφ = 0
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Fig. 5.9. Formation of magnetic islands at resonant surfaces in a tokamak.

For a circular torus of large aspect ratio we may substitute (4.35) to write this as(m

n
− q(r)

)
Bθ (r) = 0

showing that resonant surfaces occur at r = rmn where

q(rmn) = m/n

These are the mode rational surfaces. Figure 5.9 shows the formation of magnetic
islands at the resonant surfaces corresponding to m = 1, 2 and 3. The mode rational
surfaces on which these islands appear are shown in Fig. 5.9(a). With magnetic
shear, q(r) increases with r and the magnetic field lines on any surface r = rmn

close on themselves after n circuits around the torus. (For all other values of r the
field lines continue to wind around the torus without ever closing and eventually
cover all of the surface. Such field lines and surfaces are said to be ergodic, as
mentioned in the discussion of the rotational transform in Section 4.3.2.) The
magnetic islands that form at the mode rational surfaces also twist around the torus
closing on themselves after n times. Since heat flows rapidly along field lines one
of the consequences of this structure is an increase in transport across the plasma.

Tearing mode instabilities are believed to be the source of Mirnov oscillations
which are magnetic fluctuations, first detected by Mirnov and Semenov (1971),
occurring during the current rise in tokamaks. The azimuthal variation of the fluc-
tuations shows them to be associated with a succession of decreasing m numbers
as the current rises and the q value at the plasma surface decreases according to

q(a) = aBφ

RBθ (a)
= 2πa2 Bφ

µ0 RI
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Fig. 5.10. Mirnov oscillations (after Mirnov and Semenov (1971)).

where from (4.73) we have substituted µ0 I = 2πaBθ (a). Time variations are
illustrated in Fig. 5.10. Note that these oscillations persist beyond the current rise.

Sawtooth oscillations, observed in the soft X-ray emission from tokamaks, are
evidence of another instability, in this case thought to be the m = 1 kink mode
occurring in the centre of the plasma. The name arises from the shape of the oscil-
lations which show a slow rise over a period of about 1 ms followed by a sudden
fall; X-rays from the outer region of the plasma show the inverse pattern of a slow
decay followed by a rapid rise, indicating that temperature changes in the outer
plasma compensate those occurring in the central plasma due to the instability.
These are illustrated in Fig. 5.11.

The slow build-up in the inner region arises because the plasma is hotter there
and, since conductivity increases with temperature, any increase in axial current
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Fig. 5.11. Sawtooth oscillations in X-ray emission from (a) the central region and (b) the
outer region of a tokamak plasma (after Wesson (1987)).

means increased ohmic heating leading to an unstable concentration of current in
the centre of the plasma. Now as the axial current increases so does the poloidal
magnetic field and for sufficiently large current the safety factor q may fall below
unity allowing a q = 1 surface to appear near the axis. This is illustrated in Fig.
5.12 which shows the subsequent development of the m = 1 instability at the q = 1
surface. The shaded region is the hot q < 1 island. The growth of the q > 1 island
displaces it to the outer region where it slowly decays and disappears by thermal
conduction to the cooler plasma. The equilibrium field structure is restored and
the procedure is repeated. The rapid reconnection phase, (iii)–(v), produces the
sudden fall (rise) in temperature in the inner (outer) region of the plasma and the
corresponding patterns in soft X-ray emission.

Neither Mirnov nor sawtooth instabilities prevent the satisfactory operation of
tokamaks. On the other hand, a third resistive instability leads to the collapse
of the plasma current and it is therefore known as the disruptive instability. The
principal characteristics of the disruptive instability are a rapid broadening of the
current profile with consequent decrease in the poloidal field, followed by a loss of
thermal energy from the plasma to a degree that quenches the discharge. In general
the instability is interpreted in terms of a model in which magnetic surfaces are
destroyed by tearing modes with different helicities at different resonant surfaces.
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Fig. 5.12. Development of m = 1 instability at q = 1 surface (after Wesson (1987)).

Plasma containment breaks down with loss of energy from the tokamak by means
of heat transport along the field.

The disruptive instability is the least well understood of the tokamak instabilities
but observations indicate that the m = 2 tearing mode is crucially involved. In the
earliest phase the m = 2 instability is saturated at a low level but slowly increasing
density or current triggers the precursor phase in which the unstable oscillations
reach much higher amplitudes. Since other low m modes are observed in this phase
it is possible that a non-linear interaction of the m = 2 mode with the m = 1
sawtooth or m = 3 (n = 1 or 2) modes is involved, though other interactions with
the outer region of the plasma or the limiter are possible. Whatever the mechanism,
the growth in amplitude over a period of about 10 ms triggers the fast phase in
which the central temperature collapses and the radial current profile flattens in
a time of the order of 1 ms. This is followed by the quench phase in which the
plasma current decays to zero. Fuller discussions of the disruptive instability are
to be found in Wesson (1987) and Biskamp (1993). The phases of a disruptive
instability driven by increasing density are illustrated schematically in Fig. 5.13
which sketches the time development of the m = 2 magnetic field fluctuations,
central temperature, and plasma current.
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Fig. 5.13. Disruptive instability.

5.4 Magnetic field generation

Magnetic fields pervade the Universe ranging in magnitude from background levels
of about 10−10 T to as high as 108 T in neutron stars. Understanding why large scale
magnetic fields occur in stars and galaxies remains a key concern in astrophysics
(Field (1995)). A detailed discussion of the problems of field generation has been
given by Parker (1979). Here we limit our discussion to a brief outline of some
basic ideas. The contraction of gas leading to formation of galaxies carried with it
some part of the primordial magnetic field so that each galaxy, when formed, had
within it a magnetic field. In the same way diffuse interstellar gas clouds condens-
ing to form stars had remnants of the primordial field trapped within. However, in
due course magnetic buoyancy and diffusion might be expected to disperse such
fields except possibly for some fragment preserved within the (stable) inner core
of stars. Consequently, one of the most long-standing and challenging problems in
MHD has been to explain just how the observed magnetic fields of stars and planets
are sustained.
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There are two possible mechanisms by which magnetic fields may be regener-
ated, by means of a dynamo or a battery. A dynamo mechanism necessarily requires
some initial field on which the fluid motion can act. This is not a requirement for
the battery mechanism suggested by Biermann (1950) which in the event proved
to be incapable of generating sufficiently strong fields. However, as Parker (1979)
remarks, the real significance of the Biermann battery is that it guarantees, if all
else fails, a seed field for stars and galaxies. We turn now to an outline of some
aspects of dynamo action.

5.4.1 The kinematic dynamo

One obvious source of energy for the regeneration of magnetic fields is the kinetic
energy in flow fields. Dynamo action amounts to the systematic conversion of the
kinetic energy of the flow field into magnetic field energy. The full dynamo problem
is formidable since the regeneration of the field must come via the convection term
in (5.1) and so what is required is the simultaneous solution of this equation for B
and the equation of motion for u. The difficulties of this task are such that work
has mostly been concentrated on the kinematic dynamo problem in which one tries
to devise a flow field which will maintain a magnetic field against resistive decay,
i.e. (5.1) is to be solved for B when u(r, t) is given.

Paradoxically, a major advance in kinematic dynamo theory was made in 1934
by Cowling’s proof of an anti-dynamo theorem (Cowling, 1976). Using a simple
argument he showed that a steady, axisymmetric magnetic field cannot be main-
tained. In the case that he considered both the flow and the field lines are in a
meridional plane through the axis of symmetry. In any such plane the field lines
must be closed curves enclosing at least one neutral line as shown in Fig. 5.14.
Then if we integrate Ohm’s law around this line we get∮

j · dl = σ

∮
E · dl + σ

∮
u × B · dl

= σ

∫
∇ × E · dS = −σ

∫
∂B
∂t

· dS = 0 (5.25)

where the integral of the convection term vanishes on account of the fact that B is
zero along the neutral line and the final integral vanishes because, by assumption,
∂B/∂t = 0. But (5.25) implies that jφ = 0 which is clearly incompatible with
Ampère’s law, µ0j = ∇× B, and the contradiction proves the theorem. The physi-
cal interpretation of the theorem is that while the convection term can transport the
field lines in the meridional plane it cannot create new field lines to replace those
that diffuse through the plasma and disappear at the neutral point.

The proof of Cowling’s theorem can be extended to include an azimuthal com-
ponent of the magnetic field. In this case u × B · dl = 0 on the neutral line since
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Fig. 5.14. Geometry of field lines in Cowling’s theorem.

B and dl are parallel. Further generalizations of the anti-dynamo theorem exist
for field configurations which are topologically similar to the axisymmetric case.
The conclusion is that although a spherical body like a star or planet may have a
dominant axially symmetric dipole field at its surface, the magnetic field within the
body must be considerably more complicated if it is to be maintained by dynamo
action.

Cowling’s theorem and extensions of it are important in ruling out fields and
fluid motions with certain simple structures. The question remains as to what
properties are required of the motion for magnetic fields to be generated? In the
most general terms the answer appears to be that differential (non-uniform) rotation
and turbulent convection are required.

Following Cowling’s theorem it took more than twenty years before Herzen-
berg (1958) and Backus (1958) proved existence theorems for possible dynamo
mechanisms for steady and oscillating fields, respectively. This led to the develop-
ment of other dynamo models and the emphasis of research was able to turn from
mere existence to possible relevance. Subsequently, progress has been more rapid
so that the kinematic problem is now broadly understood and, despite its mathemat-
ical complexity, considerable advances have been made towards the ultimate goal
of a self-consistent solution of the dynamic problem. The brief qualitative account
of the essential physics of the dynamo action presented here follows closely the
decriptions given by Moffat (1993) and Field (1995).
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Fig. 5.15. Increase in field strength by stretch, twist and fold sequence (after Moffat
(1993)).

We have seen already in Section 4.2 how a flow which stretches a magnetic
flux tube increases the field strength. Continuing the analogy, we may suppose that
the flux tube is stretched to twice its original length and then twisted and folded,
as illustrated in Fig. 5.15, to obtain a field of twice the original strength through
the fixed loop C . Of course, such a stretch–twist–fold cycle, suggested originally
by Zel’dovich in 1972, merely illustrates how the field strength may be increased
from an arbitrarily low level and it is necessary to explain what kind of a flow might
realistically produce this effect. The answer lies in the combination of two physical
processes known as the α- and �-effects.

It is assumed that u and B consist of slowly varying axisymmetric mean compo-
nents and weak small scale fluctuating components:

u = 〈u〉 + u′

B = 〈B〉 + B′
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Averaging the induction equation over the small scale fluctuations gives

∂〈B〉
∂t

= ∇ × [〈u〉 × 〈B〉] + ∇ × 〈u′ × B′〉 + η∇2〈B〉 (5.26)

Subtracting this equation from (5.1) then gives the evolution equation for B′,
namely,

∂B′

∂t
= ∇ × [〈u〉 × B′ + u′ × 〈B〉] + ∇ × [u′ × B′ − 〈u′ × B′〉] + η∇2B′ (5.27)

Since we may transform to a coordinate system in which 〈u〉 = 0 the basic
task of kinematic dynamo theory is to solve (5.27) for B′ in terms of u′ and 〈B〉
and substitute in the second term on the right-hand side of (5.26). This is the
crucial ‘extra’ term (compared with the induction equation containing only the
mean axisymmetric flow and field) which permits dynamo action to take place. It
does so by means of a regenerative cycle in which a toroidal field Bt is created from
a poloidal field Bp by means of the�-effect while the combination of diffusion and
the α-effect acts on Bt to regenerate Bp. The �-effect arises from the first term on
the right-hand side of (5.26) and is relatively simple to understand as explained
below. The α-effect comes from the second term ∇ × 〈u′ × B′〉 and is much more
subtle. Specifically, under certain simplifying assumptions one can show that

〈u′ × B′〉 = −α〈B〉 + β∇ × 〈B〉
where α = 〈u′ · ∇ × u′〉τ/3, β = 〈u′ · u′〉τ/3 and τ is the velocity correlation
time. The β term enhances the diffusion whilst the α term, provided the helicity is
non-zero, regenerates the mean poloidal field.

The �-effect takes its name from the symbol used to denote the rate of angular
rotation of a conducting sphere, which is assumed to vary with distance from the
axis of rotation. Such a differential rotation rate arises when convection currents
are subject to a combination of buoyancy and Coriolis forces. The essential point
is that, by conservation of angular momentum, descending fluid elements increase
their rate of rotation. Consequently, a field line passing through the rotating sphere
is wound around the axis of rotation rather than simply being carried around, as
would be the case if the rotation rate was uniform. As Fig. 5.16 shows, this creates
a toroidal field component Bt from what was originally a purely poloidal field Bp;
note, also, that Bt is antisymmetric about the equatorial plane.

The α-effect does the opposite, creating a poloidal component Bp from a purely
toroidal field Bt. Consider the flow field

u = (0, u0 cos(kx − ωt), u0 sin(kx − ωt))

which represents a circularly polarized wave travelling along the x-axis as shown
in Fig. 5.17(a). It is easily verified that the vorticity ω ≡ ∇ × u = −ku and hence
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Fig. 5.16. Illustration of �-effect (after Moffat (1993)).

the kinetic helicity ω · u = −ku2
0 is constant. Now it turns out that such a flow

can deform a straight magnetic field line into a helix, as indicated in Fig. 5.17(b),
though the way in which this is done is quite subtle and requires finite resistivity.

We have seen already in Section 4.3.4 that a current density parallel to the
magnetic field produces a helical field. However, the electromotive force u × B,
resulting from the interaction of flow and field, gives rise to a current component
perpendicular to B in ideal MHD and it is only when the effect of finite resistivity
shifts the phase of the magnetic field perturbation b relative to u that a space-
averaged 〈u × b〉 leads to a current component parallel to B, i.e. j = αB; the
constant α is proportional to the phase shift which, in turn, is proportional to the
resistivity. Steenbeck, Krause and Rädler (1966) showed that the α-effect occurs in
any turbulent flow field provided that the mean helicity 〈ω · u〉 �= 0.

In toroidal geometry the x-axis transforms to the toroidal direction and we see
that the α-effect produces a poloidal component Bp from a toroidal field Bt. Thus,
the combined α�-mechanism comprises a regenerative cycle. It is now widely
accepted that it is by this cycle that the magnetic fields of the Earth and Sun are
maintained and there is a nice irony in that the very effect (finite resistivity) that
makes a regenerative mechanism necessary is also essential to its operation.

Although the kinematic problem is generally well understood the dynamic prob-
lem is still wide open. In both the Earth and Sun the α�-mechanism operates in
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Fig. 5.17. Illustration of α-effect (after Moffat (1993)).

a convection zone which is a spherical annulus. For the Earth this is the liquid
outer core which lies between the solid inner core and the Earth’s mantle. The
most widely accepted model is one originally proposed by Braginsky (1991) who
suggested that the slow solidification of the liquid at the inner core boundary
(ICB) releases an excess of lighter elements, such as sulphur, in the liquid alloy
of the outer core. The buoyancy of the lighter fluid causes it to rise towards the
core–mantle boundary (CMB) generating convection currents as it does so. Beyond
that, however, essential questions regarding the length scale of the rising elements,
the degree of turbulence that they generate and the rate at which they mix with the
heavier liquid, which determines the diffusion rate, remain unanswered. The thrust
of research is therefore, on the experimental side, a detailed study of the variation
with time of the Earth’s field so that, by the application of inverse theory, the field
at the CMB may be reconstructed and, on the theoretical side, the development of
self-consistent models.

A computer simulation by Glatzmaier and Roberts (1995) which simulated the
Earth’s field over a period of 40 000 years produced the first convincing evidence
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that fluid motions in the Earth’s core could sustain the geomagnetic field. The
three-dimensional model has not only generated a stable, dipole field over a period
roughly three times the magnetic diffusion time (∼13 000 years) but one which
reproduced other geomagnetic features such as magnetic axis displacement (from
rotational axis) and field reversal.

5.5 The solar wind

The continual streaming of plasma from the Sun’s surface is known as the solar
wind and we have noted already that there are important consequences for the
geomagnetic field arising from reconnection in the region where the solar wind
strikes the magnetosphere. The solar wind extends the solar plasma to the Earth and
well beyond; in fact, the solar wind is thought to continue to a boundary with the
interstellar medium at 50–100 AU. Correlation between variations of the Earth’s
magnetic field and activity on the Sun had been observed since the nineteenth
century but attempts to explain the connection on the basis of static models of the
solar corona failed to provide satisfactory solutions and, although there had been
earlier suggestions that plasma ejected from the Sun was the cause of geomagnetic
storms and the shape of comet tails, it was not until 1958 that Parker established
the theoretical basis for the solar wind by solving the steady flow problem. Soon
afterwards satellite observations confirmed its existence and began to compile its
physical properties in ever increasing detail.

Parker (1958) showed that no hydrostatic equilibrium between the solar corona
and interstellar space was possible and that non-equilibrium is what gives rise to
a supersonic low density flow which is the solar wind. Although both the high
temperature of the corona and the outflowing solar wind have been long observed,
the precise mechanism that leads to plasma flowing out from the Sun’s surface
is not well understood. The slowest flows can be attributed to a thermally driven
wind but non-thermal additions are needed in the supersonic region. Energy and
momentum transfer from hydromagnetic waves, such as Alfvén waves, are likely
sources and Alfvén-like fluctuations have been observed in the solar wind. Param-
eters characteristic of the solar wind are given in Table 5.3 at distances of a solar
radius (R� = 6.96 × 108 m) and at 1 AU = 215R�.

The solar wind is composed largely of protons and is permeated by a magnetic
field. The magnetic field is frozen in the radial flow outwards from the surface.
However because of the Sun’s rotation the magnetic field is twisted into a spiral.
It exhibits a complex structure attributable in part to the admixture of open and
closed magnetic structures at the Sun’s surface. In a general sense open magnetic
structures are favourable to the generation of the solar wind while closed structures
oppose it.
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Table 5.3. Solar wind characteristics

r/R� 1 215

Composition H+, He++ H+, He++

Number density ni (m−3) 2 · 1014 7 · 106

Ion temperature Ti (K) 106 105

Plasma flow velocity u (km s−1) 1 400
Magnetic field B (nT) 105 10

The flow problem that Parker solved was hydrodynamic rather than hydromag-
netic in that he assumed that the dominant forces in the equation of motion are the
pressure gradient and gravity. Thus, for the steady, spherically symmetric flow of
an isothermal plasma the equation of motion is

ρu
du

dr
= −dP

dr
− G M�ρ

r2
(5.28)

where G is the gravitational constant and M� is the mass of the Sun. Mass conser-
vation requires

4πr2ρu = const. (5.29)

and the assumption of constant temperature means that we can define a constant
isothermal sound speed by

u2
c = P/ρ. (5.30)

Differentiating (5.29) and (5.30) and eliminating dρ/dr gives dP/dr in terms of
du/dr which may be substituted in (5.28) to give(

u − u2
c

u

)
du

dr
= 2u2

c

r
− G M�

r2
(5.31)

This equation has a critical point at r = rc ≡ G M�/2u2
c, u = uc, where du/dr is

undefined. Its analytic solution is(
u

uc

)2

− log

(
u

uc

)2

= 4 log

(
r

rc

)
+ 4rc

r
+ C (5.32)

where C is a constant of integration. The solution curves are sketched in Fig. 5.18;
the critical point A at (rc, uc) is a saddle point with du/dr becoming infinite as
u → uc (r �= rc) and vanishing as r → rc (u �= uc), in accordance with (5.31).
The trajectories through the critical point separate the various classes of solution.
Of these I and III are double-valued and, therefore, physically unacceptable while II
and IV have solar wind speeds which are entirely supersonic (II) or subsonic (IV),
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Fig. 5.18. Solution curves for Parker’s solar wind model.

neither of which accords with observation. Since the solar wind has a flow speed
which is subsonic at the Sun and supersonic at the Earth the only acceptable so-
lution is the (positive slope) trajectory (V) through the critical point (rc, uc). It is
apparent from (5.32) that C = −3 for this curve.

For r → ∞, u 
 uc so that u ∼ (log r)1/2 and, from (5.29) and (5.30), P ∼ ρ ∼
r−2(log r)−1/2 → 0, as one would expect. The model predicts a flow speed of about
10 km s−1 at the Sun and about 100 km s−1 at the Earth, both of which are of the
right order of magnitude. Unfortunately, its prediction for the density at the Earth
is two orders of magnitude too high. Consequently, there have been many further
developments of the model. In particular, the assumption of an isothermal plasma is
known to be an over-simplification so the model has been extended to include heat
conduction in an energy equation and, in a further refinement, a two-fluid model
with separate ion and electron energy equations has been investigated since energy
exchange between the species is negligible in the solar wind except for the region
very close to the Sun. We shall not pursue these developments but an account of
them may be found in Priest (1987).

Of course, a major simplification of Parker’s model is the omission of the mag-
netic field. If the magnetic energy in the solar wind is negligible compared with its
kinetic energy, as Parker assumed, then the field does not significantly affect the
flow but, on the other hand, the flow drags the field lines out from the solar surface
as indicated in Fig. 5.19. In plan view, looking down the polar axis, the field lines
are spirals due to the combined effect of the solar wind and solar rotation. We can
calculate the angle ψ(r) between the flow velocity u(r)r̂ and the magnetic field
B(r) by considering the motion of a fluid element which leaves a point P0 on the
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Fig. 5.19. Field lines at solar surface.

Sun’s surface at time t = 0. To an observer at P0(t) rotating with the Sun, the fluid
element traces out the spiral path P0(t) → P(t) shown in Fig. 5.20 and, in the
ideal MHD approximation, this must be a field line since there can be no motion
perpendicular to the field lines. On the other hand, to an observer not rotating with
the Sun but remaining at P0(0) the path of the fluid element is straight and radial, a
motion that is made possible by the rotation of the field line about P0. In plane polar
coordinates with origin at P0(0) the velocities of fluid element and field line at P(t)
are u = [u(r), 0] and vB = [0, �(r − R�)], respectively. Then the condition that
there should be no motion of the fluid element perpendicular to the field line is

u sinψ(r) = vB cosψ(r)

from which we get

tanψ(r) = �(r − R�)
u(r)

(5.33)

At the Earth this angle is about π/4.
In fact, the assumption that the kinetic energy dominates the magnetic energy, so

that the field does not affect the flow, does not hold very close to the Sun’s surface
and the field lines wind up into a very tight spiral slowing the radial flow drastically
at low latitudes. The radius rA at which the kinetic and magnetic energies are equal,
i.e. the flow speed is the Alfvén speed vA, is called the Alfvén radius. For r � rA,
the field keeps the solar wind rotating with the Sun thereby increasing its angular
momentum (at the expense of the Sun! – this effect is thought to have slowed the
Sun’s rotation significantly during its lifetime); well beyond r = rA the effect of the
field on the wind becomes negligible and it continues its outward flow conserving
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Fig. 5.20. Plasma motion in solar wind.

its angular momentum. In a more accurate model, therefore, the solar wind has a
flow velocity with both radial and azimuthal components.

The azimuthal component of the flow velocity of the solar wind in the equatorial
plane of the Sun was calculated by Weber and Davis (1967). They examined a
steady state model with axial symmetry in which the field lines are completely
drawn out by the solar wind in the equatorial plane so that there is no component of
the field perpendicular to the plane. Thus, in the equatorial plane it is assumed that,
in spherical polar coordinates, B = [Br (r), 0, Bφ(r)] and u = [ur (r), 0, uφ(r)].
Assuming that the field is radial at the solar surface (r = R�), i.e. B(R�) =
(B0, 0, 0) say, it follows from ∇ · B = 0 that

Br (r) = B0 R2
�/r2 (5.34)

Mass conservation requires

ρurr2 = const. (5.35)
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and the steady state induction equation, ∇ × (u × B) = 0, gives

1

r

d

dr

[
r(ur Bφ − uφBr )

] = 0

which may be integrated to obtain

ur Bφ − uφBr = −�R2
� B0/r (5.36)

assuming uφ(R�) = �R�. It then follows from (5.34) and (5.36) that

Bφ(r) = uφ(r)− r�

ur (r)
Br (r) (5.37)

The equation of motion is

ρ(u · ∇)u = −∇P + (∇ × B)× B/µ0 − (G M�ρ/r3)r (5.38)

the φ-component of which is simply

ρ
ur

r

d

dr
(ruφ) = Br

µ0r

d

dr
(r Bφ) (5.39)

But from (5.34) and (5.35), ρurr2 and Brr2 are both constant so multiplying (5.39)
by r3 we may integrate to get

ruφ − Br

µ0ρur
r Bφ = const. = L (5.40)

say. Introducing the radial Alfvén Mach number

MA ≡ ur

Br/(µ0ρ)1/2
(5.41)

we may substitute (5.37) in (5.40) to obtain

uφ(r) = �r(M2
AL/(�r2)− 1)/(M2

A − 1) (5.42)

This equation determines uφ as a function of r and MA(r). From observations
it is known that MA � 1 near the surface of the Sun and that MA 	 10 at the
Earth. The point r = rA, between the Sun and the Earth, at which MA = 1 is called
the Alfvén critical point. At this point the numerator in (5.42) must vanish to keep
uφ(rA) finite so that L = �r2

A.
From (5.34), (5.35) and (5.41) we deduce that M2

A/urr2 is a constant, which we
evaluate at the Alfvén critical point to get

M2
A

urr2
= 1

vA(rA)r2
A

(5.43)
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Fig. 5.21. Azimuthal flow velocity of solar wind (after Weber and Davies (1967)).

so that we may write (5.42) as

uφ(r) = �r
(1 − ur/vA)

(1 − M2
A)

(5.44)

and (5.37) as

Bφ(r) = −Br
�r

vA

(1 − (r/rA)
2)

(1 − M2
A)

= − B0 R2
��

vAr

(1 − (r/rA)
2)

(1 − M2
A)

(5.45)

where we have also used (5.34). From these expressions we may obtain the asymp-
totic behaviour of the azimuthal components of u and B. First of all, for r → ∞
the effect of the magnetic field is negligible and from Parker’s solution we know
that ur ∼ (log r)1/2 so that from (5.43) we see that MA ∼ r(log r)1/4 and hence,
uφ ∼ r−1 and Bφ ∼ (r(log r)1/2)−1. For r � rA, we obtain from (5.43)–(5.45), to
lowest order in ur/vA and r/rA,

uφ = �r

[
1 − ur

vA

(
1 −

(
r

rA

)2
)]

Bφ = −Br
r�

vA

[
1 −

(
r

rA

)2 (
1 − ur

vA

)]

The solution for uφ obtained by Weber and Davis is shown in Fig. 5.21. The
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dashed line is the asymptotic solution

uφ → �r2
A

r

(
1 − vA

ur

)

which follows from (5.44). If, in the simple model discussed above, the plasma,
constrained by the Sun’s magnetic field, were to rotate with the angular velocity of
the Sun out to r = rA and then experience no effect of the field for r > rA, conser-
vation of angular momentum would give uφ → ωr2

A/r . The factor (1 − vA/ur )

represents a correction to this oversimplified picture on account of the angular
momentum retained by the magnetic field at large r .

Weber and Davis go on to calculate ur from the radial component of (5.38) using
the adiabatic gas law for p

pρ−γ = const. = pAρ
−γ
A

where pA and ρA are the solar wind pressure and density at r = rA. The equation
requires numerical solution and we shall not pursue the details here. However, it is
of interest to note that the (ur , r) phase plane now has three critical points occurring
in succession at the slow magnetoacoustic, shear Alfvén, and fast magnetoacoustic
wave speeds, i.e. at the characteristic wave speeds for an ideal plasma (see Sec-
tion 4.8). The first of these is the equivalent of Parker’s critical point, occurring
at slightly below the sound speed cs. The second is, of course, the Alfvén critical
point already mentioned, and the third follows it almost immediately because in
the solar wind β � 1 so that the fast wave speed is only slightly greater than vA.
The only acceptable solutions are ones passing through all three critical points and,
of these, only one gives results of the right order of magnitude both at the Sun and
at the Earth; this solution gives results for ur and ρ which are essentially the same
as Parker’s solution. At the Earth the azimuthal speed is typically two orders of
magnitude smaller than the radial speed.

The most serious criticism of these calculations is that they are based on a
one-fluid model. Since the average electron–ion mean free path in the solar wind
is of the order of 1 AU, only the fields bind electrons and ions together and at the
very least a two-fluid model seems essential. Satellite observations have provided
very detailed information about ion and electron velocity distributions in the solar
wind and whereas ion distributions may, to first order, be represented as drifting
Maxwellians, in which the drift velocity is much greater than the thermal speed,
this is not the case for the electrons. For electrons the drift velocity is very much
less than the thermal speed so the distribution is approximately isotropic and close
to a power law. As Bryant (1993) has pointed out, such a distribution has no
characteristic energy and therefore no meaningful temperature. A kinetic treatment
may therefore be essential for a satisfactory description of electron properties.
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5.5.1 Interaction with the geomagnetic field

One of the main aims of satellite observations has been to investigate the interaction
of the solar wind with the magnetic fields of the planets and with that of the Earth in
particular. We know from (5.33) that the angle ψ between the solar wind magnetic
field and flow direction increases with distance from the Sun and decreases with
flow speed. At a mean speed of 430 km s−1, particles from the Sun take about four
days to reach the Earth (1 AU = 1.5 × 108 km) during which time the Sun has
executed slightly more than one seventh of its 27 day rotation. A faster stream,
making a smaller angle, will cause turbulence and interplanetary shock formation
as it overtakes a slower stream. In this way events on the Sun, such as solar flares,
lead to major perturbations in the planetary interaction.

The main effect of the solar wind on a planetary magnetic field is to create an
asymmetry in the noon–midnight meridian plane. In ideal MHD there can be no
interpenetration of the fields so the solar wind flows around the planet enclosing its
field in a cavity called the magnetosphere. This is compressed on the dayside by
the pressure of the solar wind and stretches out on the nightside in the magnetotail.
The boundary of the magnetosphere is called the magnetopause.

There is, however, another important boundary beyond the magnetopause due
to the fact that the solar wind speed is greater than the fast magnetosonic wave
speed. As we shall see in the next section, in this situation, which is analogous
to supersonic flow around a stationary object, a shock wave is created – the bow
shock. The region between the bow shock and the magnetopause is known as
the magnetosheath. At the bow shock the plasma in the solar wind is slowed,
compressed and heated and it then flows through the magnetosheath and around
the magnetosphere. We shall return to the transition at the bow shock later but for
the moment our interest is in the inner boundary of the magnetosheath, namely, the
magnetopause.

The model described so far, proposed by Chapman and Ferraro in the early
1930s, is illustrated in Fig. 5.22. The magnetopause, being a narrow boundary
layer between oppositely directed magnetic fields, carries a strong current (the
Chapman–Ferraro current) and, as discussed in Section 5.2, magnetic reconnec-
tion may take place; Dungey (1961) was the first to point this out. Reconnection
takes place both at the ‘nose’ of the magnetopause between the northwards magne-
topause field and southwards solar wind field and in the equatorial plane between
the Earth’s polar field lines which are dragged out into the magnetotail by the action
of the solar wind. The effect of reconnection is fundamental because field lines
now cross the magnetopause at the nose and in the tail and the magnetosphere is
no longer enclosed. Since particles travel easily along field lines this means that
interchange between the solar wind and magnetospheric plasma is possible.
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Fig. 5.22. Interaction of solar wind with Earth’s geomagnetic field; arrows indicate direc-
tion of magnetic field (solid lines) and plasma flow (dashed lines) (after Cowley (1995)).

Detection of the reconnection predicted by Dungey has been discussed by Cow-
ley (1995). One possibility is to detect plasma flow away from the X point (see Fig.
5.4 and the discussion in Section 5.2.1) although the motion of the magnetopause
makes detection difficult. Since the current sheet between the oppositely directed
magnetosheath and magnetosphere fields is only a few hundred kilometres thick
and the speed of the transverse motion is typically several tens of kilometres
per second, the magnetopause passes across the spacecraft in about ten seconds
thereby requiring resolution of plasma data of just a few seconds. Observations
were made by the Explorer satellites in the late 1970s and, with higher resolution,
by the AMPTE-IRM spacecraft in the mid-1980s. Data show that reconnection
takes place in about half of all magnetopause crossings where the angle between
the fields is greater than 90◦. When reconnection takes place it often does so in a
pulsed manner on a time scale of about ten minutes, creating so-called flux transfer
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events (FTEs) which travel over the magnetopause. Neither the pulsed nature of
FTEs nor the factors that determine when and where reconnection takes place are
well understood. The proximity of oppositely directed fields is a necessary but not
a sufficient condition.

The clearest evidence for the validity of Dungey’s model has been obtained by
an analysis of the ion velocity distributions on either side of the magnetopause
confirming the pattern predicted by Cowley in 1982. The acceleration (by the con-
tracting field lines), transmission and reflection of ions entering the current sheet
produces characteristic D-shaped velocity distributions in the plane of the magne-
topause on open field lines. A spherical distribution of incident ions should produce
a D-shaped distribution of transmitted ions on open lines in the magnetosphere and
a double D-shaped distribution of incident and reflected ions on open lines in the
magnetosheath. Such D-shaped velocity distributions have been obtained by Smith
and Rodgers (1991) from AMPTE-UKS spacecraft data.

Further support for Dungey’s model comes from observations of magnetospheric
flow correlations. Given the sensitivity to solar activity there is a wide variation of
field-flow angle at the nose of the magnetopause and conditions are most favourable
for reconnection when the field points south and least favourable when it points
north. Following dayside reconnection there is excitation of magnetospheric flow
via the open field lines from dayside to tail and the subsequent return of closed
field lines through the magnetosphere. Experiments carried out by Cowley and
collaborators have shown that dayside flows are excited within about five minutes
of a switch of the interplanetary field from north to south and this has been cor-
related with nightside activity, including intense auroral displays associated with
the consequent change in field structure which occur after a period of about 30–45
minutes.

5.6 MHD shocks

Supersonic flow gives rise to the generation of shock waves, a well-known illustra-
tion of this principle being the audible ‘sonic bang’ emanating from an aircraft in
supersonic flight. This is no less true for flows in conducting media than for neutral
fluid flows but, as we shall see, it is considerably more complex. In a neutral fluid
any disturbance, such as that produced by a moving aircraft or a piston at one end
of a tube, causes a wave to propagate through the fluid at the speed of sound cs;
such a wave is called a compression or sound wave. So long as the cause of the
compression wave, the aircraft or piston, is itself moving more slowly than the
speed of sound the wave will propagate ahead of the disturbance and adiabatic
changes may take place in response to it. But if the disturbing agent increases its
speed to cs or greater it begins to catch up with and then overtake the compression
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Fig. 5.23. Illustration of wave-front steepening in propagation of compression wave.

wave-front with the result that the fluid experiences a sudden, non-adiabatic change
of state; this is what we mean by a shock.

The profile of the shock wave, travelling through the fluid and creating the
change of state, is the result of a balance between convective and dissipative effects.
Since the sound speed cs ∝ ργ−1 is greatest at the peak of a finite amplitude
wave the wave-front steepens, as illustrated in Fig. 5.23. However, as the wave-
front steepens, dissipative effects, which are proportional to gradients in the fluid
variables, become stronger and a steady profile is achieved when the convective
steepening is counter-balanced by the dissipative flattening of the wave-front. It is
this steady wave-front, propagating at supersonic speed through the undisturbed
fluid, which constitutes the shock wave. The smaller the coefficients of dissipation
the more nearly the shock wave aproaches a vertical discontinuity.

Fluid properties may change considerably across a shock wave and the shock is
thus a steady transition region between the undisturbed (unshocked) fluid and the
fluid through which the shock has passed. In Fig. 5.24, region 1 is the unshocked
fluid and is said to be in front of the shock or upstream; region 2 is the shocked
fluid, said to be behind the shock or downstream. Usually one regards a shock
as a transition region between two uniform states as in Fig. 5.24(a) although in
practice this is difficult to realize and the situation depicted in Fig. 5.24(b) is more
likely. Here, the shocked fluid is not in a uniform state but is subject to a relief
or expansion wave. This means that the state of the fluid behind the shock does
not persist but changes with time after the shock has passed on. Nevertheless, it is
convenient to take both region 1 and region 2 as uniform and this will be assumed
unless otherwise stated. (The validity of this assumption depends on the time of
relaxation from the state represented by the point A in Fig. 5.24(b) being longer
than other times of interest.) Since the establishment of a new equilibrium state in
a non-conducting fluid can only be achieved by collisions, the width or thickness
of the shock is of the order of a few mean free paths.
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Fig. 5.24. Illustration of shock wave transition between (a) uniform states and (b) uniform
initial state and final state subject to expansion wave.

The theory of hydrodynamic shocks is reasonably well understood; see
Lighthill (1956). As usual, the hydromagnetic case is considerably more compli-
cated. For a start, conducting fluids in a magnetic field can support two further
modes of wave propagation. Returning to the piston analogy, transverse move-
ments of the piston in a non-conducting fluid have no effect (beyond a boundary
layer where viscous forces maintain a velocity gradient). This means that there
is effectively only one (longitudinal) degree of freedom and, therefore, only one
mode of propagation, with the velocity cs. However, the transverse movement of a
conducting piston in an infinitely conducting fluid carries any longitudinal compo-
nent of a magnetic field with it, thereby producing a wave. Thus a conducting fluid
in the presence of a magnetic field has three degrees of freedom (one longitudinal
and two transverse) and hence three modes of wave propagation. There are three
propagation speeds, therefore, generally known as fast, intermediate, and slow (see
Section 6.4.2). Intermediate waves are purely transverse and do not steepen to
form shock waves. The fast and slow modes in general contain both transverse
and longitudinal components and these modes give rise to shocks.

More fundamental differences between shocks in neutral fluids and in plasmas
arise when we come to consider shock structure. Particularly striking is the exis-
tence of shocks with thicknesses much less than the collisional mean free path.
These collisionless shocks cannot be MHD shocks (though they may in certain
limits be described by fluid equations) and we postpone their discussion until
Chapter 10. However, for collision-dominated shocks two factors greatly facilitate
discussion of the effects of a shock wave on a fluid. First, the shock transition region
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Fig. 5.25. Shock rest frame.

may for most purposes be approximated by a discontinuity in fluid properties.
Second, the macroscopic conservation equations and the Maxwell equations may
be integrated across the shock to give a set of equations which are independent of
shock structure and relate fluid properties on either side of the shock. This most
useful and straightforward aspect of shock theory is developed first.

5.6.1 Shock equations

For simplicity we restrict discussion to plane shocks moving in a direction normal
to the plane of the shock. Let this be the x direction; then all variables are functions
of x only inside the shock and are constant outside the shock (in regions 1 and
2). It is convenient to use a frame of reference in which the shock is at rest, In
this frame, depicted in Fig. 5.25, the plasma enters the shock with velocity u1

and emerges with velocity u2. Steady state conditions apply (i.e. all variables are
time-independent) and the Maxwell equation for j is

µ0j =
(

0,−dBz

dx
,

dBy

dx

)
(5.46)

The MHD equations do not apply in the shock region since dissipative processes
take place there; however they do apply on either side of the shock, i.e. in regions
1 and 2. Thus from Ohm’s law

E1 = j1

σ1
− u1 × B1 E2 = j2

σ2
− u2 × B2 (5.47)
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Now from ∇ · B = 0 and ∇ × E = −∂B/∂t = 0 we find

dBx

dx
= 0 (5.48)

dEy

dx
= 0 (5.49)

dEz

dx
= 0 (5.50)

The other equations to be integrated across the shock are the equations of conser-
vation of mass, momentum and energy. These are discussed in their most general
form in Section 12.5 but since we shall integrate them across the shock and evaluate
them in the upstream and downstream plasmas, where the MHD approximation is
assumed, the result is the same if we use the conservation equations derived in
Section 4.2. Since variables depend on x only, we have from (4.1)–(4.3)

d(ρux)

dx
= 0 (5.51)

d�xx

dx
= 0

d�xy

dx
= 0

d�xz

dx
= 0 (5.52)

dSx

dx
= 0 (5.53)

Integrating (5.48)–(5.50) and using (5.46) and (5.47) gives, on observing that
gradients are zero in regions 1 and 2,

[Bx ]2
1 = 0 (5.54)[

ux By − uy Bx
]2

1 = 0 (5.55)

[ux Bz − uz Bx ]2
1 = 0 (5.56)

where [φ]2
1 = (φ2 − φ1) in the usual notation. The integration of (5.51)–(5.53) is

trivial and one finds

[ρux ]2
1 = 0 (5.57)[

ρu2
x + P + (B2

y + B2
z )/2µ0

]2
1

= 0 (5.58)[
ρux uy − Bx By/µ0

]2
1 = 0 (5.59)

[ρux uz − Bx Bz/µ0]2
1 = 0 (5.60)[

ρux I + Pux + ρux u2/2 + ux(B
2
y + B2

z )/µ0

−Bx(Byuy + Bzuz)/µ0]2
1 = 0 (5.61)

where the internal energy

I = P/(γ − 1)ρ (5.62)
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Equations (5.54)–(5.61) relate fluid variables on one side of the shock to those
on the other, and these equations are sometimes called the jump conditions across
the shock. Defining the unit vector n̂ in the direction of shock propagation, the
jump conditions may be written in general vector form as

[ρu · n̂]2
1 = 0 (5.63)[

ρu(u · n̂)+ (P + B2/2µ0)n̂ − (B · n̂)B/µ0
]2

1 = 0 (5.64)[
u · n̂{(ρ I + ρu2/2 + B2/2µ0)+ (P + B2/2µ0)}

− (B · n̂)(B · u)/µ0
]2

1 = 0 (5.65)[
B · n̂

]2
1 = 0

[
n̂ × (u × B)

]2
1 = 0 (5.66)

The first three equations represent the conservation of mass, momentum, and
energy, respectively, for the flow of plasma through the shock. The last pair of
equations gives the jump conditions for the magnetic field expressing the continuity
of the normal component of B and the tangential component of E = −u×B. When
B = 0, (5.63)–(5.65) reduce to the corresponding hydrodynamic equations known
as the Rankine–Hugoniot equations.

After considerable manipulation (see Exercise 5.6), the velocity variables u1 and
u2 may be eliminated from the energy equation (5.65) and the result is

[I ]2
1 + 1

2
(P1 + P2)[1/ρ]2

1 + 1

4µ0
{[B]2

1}2[1/ρ]2
1 = 0 (5.67)

The hydrodynamic equivalent of this equation,

[I ]2
1 + 1

2
(P1 + P2)[1/ρ]2

1 = 0 (5.68)

relates the pressure and density on either side of the shock and is known as the
Hugoniot relation. It assumes the role played by the law Pρ−γ = const. in adi-
abatic changes of state. Note that the hydromagnetic Hugoniot (5.67) reduces to
(5.68) not only when the magnetic field is zero but also when B1 and B2 are both
parallel to the direction of shock propagation, since (5.66) then gives B1 = B2.

Before discussing particular solutions of the shock equations, the compressive
nature of shocks (i.e. P2 > P1) will be proved, assuming the plasma is a perfect
gas. The proof follows as a consequence of the second law of thermodynamics –
the law of increase of entropy. The entropy S of a perfect gas is given by

S = Cv log(P/ργ )+ const. (5.69)

where Cv is the specific heat at constant volume. Thus,

dS2

dρ2
= Cv

P2

dP2

dρ2
− γCv

ρ2
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which, in terms of the ratios r = ρ2/ρ1, R = P2/P1, may be written

ρ1

Cv

dS2

dρ2
= 1

R

dR

dr
− γ

r
(5.70)

In this equation, we regard ρ1 and P1 as constants (the given values of ρ and P in
region 1). A straightforward rearrangement of (5.67) gives

R = (γ + 1)r − (γ − 1)+ (γ − 1)(r − 1)b2

(γ + 1)− (γ − 1)r
(5.71)

where b2 = (B2 − B1)
2/2µ0 P1. Now differentiating (5.71) with respect to r and

substituting in (5.70), we get

ρ1

Cv

dS2

dρ2
=

γ (γ 2 − 1)(r − 1)2 + (γ − 1)[γ (γ − 1)r2 − 2(γ 2 − 1)r + γ (γ + 1)]b2

r [(γ + 1)− (γ − 1)r ][(γ + 1)r − (γ − 1)+ (γ − 1)(r − 1)b2]
(5.72)

The next step is to show that dS2/dρ2 is positive and we do this by proving that
both numerator and denominator of the expression in (5.72) are positive. Since
γ > 1, it is easy to verify that this statement is true for r = 1. Writing (5.71) as

R = (A + Cb2)/D

it follows for r < 1 that C < 0 and D > 0. Since the pressure ratio R must be
positive, A must also be positive, and

r > (γ − 1)/(γ + 1) (5.73)

Likewise, if r > 1 then C > 0, A > 0 and, therefore, R > 0 implies D > 0, i.e.

r < (γ + 1)/(γ − 1) (5.74)

Combining (5.73) and (5.74),

γ − 1

γ + 1
< r <

γ + 1

γ − 1
(5.75)

Thus, in the expression for R, the denominator D is positive. Therefore, R > 0
implies that the numerator (A +Cb2) is also positive. Since the denominator of the
right-hand side of (5.72) is simply r D(A + Cb2), it is therefore positive.

Turning now to the numerator in (5.72), it is clear, since γ > 1, that the first
term is positive. The remaining term is quadratic in r and positive for r = 1. If this
term is to be negative for some r it must pass through zero. However, equating it
to zero one finds imaginary roots for r , which proves that the term is positive for
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all real r . The proof that dS2/dρ2 > 0 is thus complete, showing that S2 and ρ2

increase or decrease together.
If ρ2 = ρ1, it follows from (5.67) that I2 = I1 and hence P2 = P1. Then, from

(5.69), S2 = S1. This is the limiting case in which no shock is present. Now since
the second law of thermodynamics requires S2 ≥ S1, and S2 and ρ2 change in the
same sense, it follows that ρ2 ≥ ρ1 and (5.75) must be replaced by

1 ≤ r < (γ + 1)/(γ − 1) (5.76)

Then, from (5.71), discounting r = 1 (no shock)

P2

P1
= R > 1 + (r − 1)(γ − 1)b2

(γ + 1)− (γ − 1)r

i.e. shocks are compressive, confirming the qualitative arguments used earlier. Al-
though this proof applies only to a perfect gas it seems that for all gases shocks
are compressive. This may be proved quite generally for weak shocks (Landau and
Lifshitz (1960)) and with some further assumptions (Ericson and Bazar (1960)) for
shocks of arbitrary strength.

We shall now discuss some particular shocks but before we do this some general
observations are helpful. From the jump conditions, provided there is non-zero
mass flux through the shock (ρu · n̂ �= 0) it is easy to show that n̂,B1 and B2 are
coplanar (see Exercise 5.7). It then follows from (5.66) that

B · n̂[u]2
1 = [(u · n̂)B]2

1

Thus, if B · n̂ �= 0 and u has a component perpendicular to the plane of n̂ and B it
must be the same on both sides of the shock. If B · n̂ = 0 the same result is obtained
from (5.63) and (5.64). This means that we may choose a frame of reference in
which n̂,B and u are coplanar. If this is the (x, y) plane all z components in the
jump conditions (5.54)–(5.61) are zero and (5.56) and (5.60) are satisfied trivially.

The angle θ between B1 and n̂ is used to classify shocks as parallel (θ = 0),
perpendicular (θ = π/2) and oblique (0 < θ < π/2). We shall begin with
the simple cases of parallel and perpendicular shocks for which, without loss of
generality, we may set u1 = (u1, 0, 0), i.e. the unshocked fluid flow is normal to
the stationary shock front. This means that we have chosen a frame of reference
moving with the shock speed in the x direction and the tangential flow speed u1y

of the unshocked fluid in the y direction.

5.6.2 Parallel shocks

Here both u1 and B1 are parallel to n̂ and we have noted already that one possibility
is that B2 = B1. In this case it follows from (5.66) that u2 is also parallel to n̂ and
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it is easily seen that the magnetic field drops out of the jump conditions leaving

ρ1u1 = ρ2u2 (5.77)

ρ1u2
1 + P1 = ρ2u2

2 + P2 (5.78)

ρ1u1 I1 + P1u1 + ρ1u3
1/2 = ρ2u2 I2 + P2u2 + ρ2u3

2/2 (5.79)

where the last equation may also be written, using (5.62) and (5.77), as

γ P1

(γ − 1)ρ1
+ u2

1

2
= γ P2

(γ − 1)ρ2
+ u2

2

2
(5.80)

This solution, therefore, corresponds to a hydrodynamic shock and it may be shown
(see Exercise 5.8) that one must have u1 supersonic (relative to the sound speed in
region 1) while u2 is subsonic (relative to the sound speed in region 2).

Strong shocks are defined as those for which the pressure ratio R 
 1. In
this case, it follows (see Exercise 5.8) that the Mach number in region 1, M =
(u1/cs(1)) 
 1, and the temperature ratio

T2

T1
≈ 2γ (γ − 1)

(γ + 1)2
M2 
 1 (5.81)

Since M may be as large as 100, it is clear from (5.81) that strong shocks may
be used to generate high-temperature plasmas or to obtain a plasma from a neu-
tral gas by creating a temperature T2 behind the shock sufficiently high to cause
ionization. The conversion of flow energy into thermal energy in this situation is
easily demonstrated from (5.80). In view of (5.81), the initial thermal energy may
be neglected compared with the final thermal energy. Also (see Exercise 5.8)

u1

u2
= ρ2

ρ1
≈ (γ + 1)

(γ − 1)
(5.82)

This ratio is 4 for γ = 5/3 so (5.80) may be approximated by

γ P2

(γ + 1)
= 1

2
ρ1u2

1 (5.83)

Thus, the flow energy in region 1 is converted by the shock into thermal energy in
region 2.

The hydrodynamic shock is not, however, the only possible solution for prop-
agation parallel to the initial magnetic field. It may happen that some of the flow
energy is converted into magnetic energy so that |B2| > |B1|. Since the normal
component of B is conserved this means that the passage of the shock creates a
tangential component and it is said to be a switch-on shock. We shall return to this
possibility in our discussion of oblique shocks.
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5.6.3 Perpendicular shocks

Here we have

B1 = (0, B1, 0) (5.84)

and so, using (5.54), B2 may be written

B2 = (0, B2, 0) (5.85)

Since ρux �= 0, it follows from (5.55), (5.57) and (5.59) that

u2 = (u1/r, 0, 0)

B2 = (0, r B1, 0)

Thus the magnetic field is constant in direction and increased in magnitude by the
same ratio as the density. Finally, (5.58) and (5.61) are now

ρ1u2
1 + P1 + B2

1/2µ0 = ρ2u2
2 + P2 + B2

2/2µ0

and
γ P1

(γ − 1)ρ1
+ u2

1

2
+ B2

1

µ0ρ1
= γ P2

(γ − 1)ρ2
+ u2

2

2
+ B2

2

µ0ρ2

These may be written

γ M2(1 − 1/r) = (R − 1)+ (r2 − 1)/β (5.86)

and

γ M2

(
1 − 1

r2

)
= 2γ

(γ − 1)

(
R

r
− 1

)
+ 4(r − 1)/β

respectively, where β = 2µ0 P1/B2
1 is the plasma β ahead of the shock and the

shock Mach number M = u1/cs, where cs = (γ P1/ρ1)
1/2 is the sound speed in

the upstream plasma. Eliminating R and excluding the solution r = R = 1, which
corresponds to no shock, we get

2(2 − γ )r2 + [2γ (β + 1)+ βγ (γ − 1)M2]r − βγ (γ + 1)M2 = 0

If r1 and r2 are the roots of this equation, then

r1r2 = −βγ (γ + 1)M2/2(2 − γ )

and for γ < 2 one root is negative and, therefore, non-physical. Consequently,
there is only one solution corresponding to a shock in this case. Since r > 1

βγ (γ + 1)M2 > 2(2 − γ )+ 2γ (β + 1)+ βγ (γ − 1)M2

which reduces to

γ M2 > γ + 2/β
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and, hence,

u2
1 > B2

1/µ0ρ1 + γ P1/ρ1 = v2
A + c2

s = (c∗
s )

2

where the second equality defines c∗
s . Thus, for shocks to propagate perpendicular

to a magnetic field the shock speed must be greater than c∗
s . The speed c∗

s assumes
the role played by cs in hydrodynamic shocks (see Exercise 5.9); this is not a
surprising result since c∗

s is the speed of the fast compressional wave propagating
perpendicular to a magnetic field (see Section 4.8). (Note that there is no shock
corresponding to the slow wave since it does not propagate perpendicular to the
magnetic field.) We see that the effect of the magnetic field is to increase the
effective pressure by a factor (1 + 2/γβ),

The shock strength R is reduced by the introduction of the magnetic field (see
Exercise 5.9) since flow energy is now converted into magnetic energy as well as
heat. However, since

B2/B1 = r < (γ + 1)/(γ − 1) (5.87)

the increase in magnetic energy is limited while from (5.86)

P2/P1 = R = 1 + γ M2(1 − 1/r)− (r2 − 1)/β (5.88)

so that for large Mach number, relative to a fixed value of β, the temperature ratio
is approximately the same as for the hydrodynamic case (see Exercise 5.9).

5.6.4 Oblique shocks

In the case of oblique propagation where in general u and B have both x and
y components it is convenient to choose a frame of reference, known as the
de Hoffmann–Teller frame, in which u1 × B1 = 0, that is

u1y = u1x B1y/Bx

where Bx = B1x = B2x by (5.54). Note that this is consistent with our choice for
parallel shocks but not for perpendicular shocks for which Bx = 0. From (5.55) it
follows that

u2y = u2x B2y/Bx

and hence u2 × B2 = 0, i.e. u and B are parallel on both sides of the shock;
physically, this simply says E = 0 on both sides of the shock. Now

u2y

u1y
= u2x

u1x

B2y

B1y
= ρ1

ρ2

B2y

B1y
= 1

r

B2y

B1y
(5.89)
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Also, from (5.59), we get

u2y

u1y
− 1 = Bx B1y

µ0ρ1u1x u1y

(
B2y

B1y
− 1

)
= B2

1

µ0ρ1u2
1

(
B2y

B1y
− 1

)

which may be combined with (5.89) to give

u2y

u1y
= u2

1 − v2
A

u2
1 − rv2

A

= 1

r

B2y

B1y
(5.90)

Furthermore, with this choice of reference frame the magnetic terms in (5.61)
are identically zero leaving only the hydrodynamic terms from which we get

P2

P1
= r + (γ − 1)ru2

1

2c2
s

(
1 − u2

2

u2
1

)

= r + (γ − 1)ru2
1

2c2
s

[
1 − cos2 θ

r2
− sin2 θ

(
u2

1 − v2
A

u2
1 − rv2

A

)2
]

(5.91)

It is clear from (5.90) that B2y > B1y for u2
1 ≥ rv2

A > v2
A and, conversely,

B2y < B1y for u2
1 ≤ v2

A < rv2
A. The first case corresponds to the fast shock and the

second to the slow shock and these are illustrated in Fig. 5.26 showing refraction
(a) away from and (b) towards the normal, respectively. It is when the equalities
hold in these relationships, i.e. u2

1 = rv2
A so that B1y = 0 for the fast shock, or

u2
1 = v2

A so that B2y = 0 for the slow shock, that we get (c) switch-on and (d)
switch-off shocks, respectively, corresponding to the tangential component of the
magnetic field being switched on or off.

The switch-on shock is one of the possible solutions (the fast shock) when we
let θ → 0 (i.e. parallel propagation). The slow wave in this limit has u1 = vA

so that B2y = 0. In this case both B1 and B2 are parallel to the shock normal
and B1 = B2. As noted earlier when discussing (5.67) this yields the hydrody-
namic Hugoniot; in other words, the slow shock becomes a hydrodynamic shock
at parallel propagation.

5.6.5 Shock thickness

We now wish to consider the structure of a shock, i.e. the variation of pressure,
density, magnetic field etc., within the shock itself. Even for collision-dominated
shock waves a quantitative calculation of shock structure involves considerable
effort. The procedure is to solve the appropriate transport equations inside the
shock region using either region 1 or region 2 as a set of boundary conditions. Just
what form the appropriate transport equations take is not easily decided in general.
Often the important dissipative mechanisms are viscosity, heat conductivity, and
electrical conductivity (Joule heating). Of these, only Joule heating was retained in
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B1
B1

B2

B2

(d)

switch-on switch-off

B1 B1

B2

B2

(a) (b)

fast shock slow shock

(cc)

shock shock

Fig. 5.26. Magnetic field refraction in oblique shocks.

the resistive MHD equations. The heat conduction term must be reintroduced into
the energy equation; similarly, viscosity terms must be brought into the momentum
and energy equations. However, there is considerable doubt as to whether such
a one-fluid, hydromagnetic description is appropriate for a discussion of shock
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structure. In particular, it often happens that the electrons heat up first in a shock
and then reach an equilibrium temperature with the ions after a longer period
of time. Thus, a description involving separate ion and electron temperatures is
usually necessary. Also, depending on the conditions, other dissipative mechanisms
may be important – for instance, ionization if the unshocked gas has a zero or low
degree of ionization.

However, leaving aside a quantitative discussion of shock structure, one may ob-
tain estimates for the thickness of a shock by order of magnitude arguments. Since
the conditions on either side of the shock are given by the initial conditions together
with the solutions of the shock equations, the total rate of dissipation of energy is
known and this must occur within the shock thickness, δ. If we know (or assume)
that the dissipation is due principally to one particular mechanism, we can write an
order of magnitude relationship. For example, suppose the appropriate dissipative
process is viscosity. In the energy transport equation, the term involving viscosity
is proportional to the square of the velocity gradient. Then, if other dissipative
processes are negligible, the rate of dissipation of energy, �E/�t , is proportional
to ρν(�u/δ)2, where ν(= µ/ρ) is the kinematic viscosity. Since �t ∼ δ/u1, the
order of magnitude relationship is

�E

�t
∼ u1�E

δ
∼ ρν

(
u1 − u2

δ

)2

i.e.

δ ∼ ρν(u1 − u2)
2

u1�E
(5.92)

Applying this to the particular case of the strong hydrodynamic shock discussed
in Section 5.6.2, the energy dissipated �E ≈ 1

2ρ1u2
1. Also, using (5.82), (5.92)

implies

δ ∼ ν/u1 (5.93)

or, in other words, the Reynolds number, R = u1δ/ν, is of order unity. From kinetic
theory (see Section 8.2), one can show approximately that ν ∼ Pτc/ρ, where τc is
the ion–ion collision time. Using P ∼ 1

2(P1 + P2) ≈ 1
2 P2, it follows from (5.82),

(5.83), and (5.93) that

δ ∼ τc

(
P2

ρ2

)1/2

∼ τc

(
kBT2

m i

)1/2

Thus the shock thickness is of the order of the ion collision mean free path.
To give a further example, consider dissipation by Joule heating. Here, the dis-

sipation of energy occurs at a rate proportional to j2/σ . Since µ0j = ∇ × B, the
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order of magnitude relationship is

u1�E

δ
∼ 1

σ

(
B1 − B2

µ0δ

)2

i.e.

δ ∼ (B1 − B2)
2

σµ2
0u1�E

(5.94)

From (3.38) this may be written in terms of the magnetic Reynolds number as

RM = µ0σδu1 ∼ (B1 − B2)
2

µ0�E
(5.95)

Now suppose this is applied to a strong shock propagating perpendicular to a
magnetic field (see Section 5.6.3). With �E ≈ 1

2ρ1u2
1 and B1 ≈ B2/4,

RM ∼ B2
2/2µ0

1
2ρ1u2

1

which gives the order of magnitude of the magnetic Reynolds number required if
Joule heating is to be an adequate dissipative mechanism for this shock.

As one might expect, it is found that a given dissipative mechanism can produce
the required change of state up to a certain limiting shock strength. Beyond that
other mechanisms must come into play with the result that the shock may show a
more complicated structure with more than one characteristic thickness. We return
to this question of shock structure with a specific calculation when discussing
collisionless shocks in Section 10.5.2.

Exercises

5.1 With reference to the induction equation (5.1) explain the significance
of the magnetic Reynolds number RM. What is the relationship of the
Lundquist number S to RM?

(a) Why is it that even in plasmas for which S 
 1 resistive diffusion
cannot be completely ignored? What does a dimensional analysis of
(5.1) tell us about the relative length scales for magnetic field changes
due to diffusion and convection?

(b) Establish from (5.4) and the conservation of mass that the Sweet–
Parker reconnection rate is S−1/2 where S is the Lundquist number.

(c) Follow the discussion given by Parker (1979), (Section 15.6), summa-
rizing Petschek’s model and variations, notably that due to Sonnerup
(1970).
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(d) Refer to Biskamp (1993), (Section 6.2), for a contrasting critical sum-
mary of Petschek’s model. Biskamp argues that not only is Petschek’s
concept difficult to accept intuitively but it is seriously flawed in the in-
appropriate treatment of the diffusion region. Numerical simulations of
driven reconnection do not produce a Petschek-like configuration for
small η. In particular Biskamp (1986) found that the sheet width L in-
creased as η decreased in contrast to Petschek’s scaling of L ∼ O(η).

5.2 Explain Fig. 5.6 with reference to the heuristic arguments used in Sec-
tion 5.3.1 to obtain the parametric dependence of the growth rate (5.22) of
the tearing mode. What are the physical characteristics of the tearing mode
that make it much more of a threat to plasma stability than the gravitational
and rippling modes?

5.3 Biermann (1950) showed that stellar magnetic fields could be generated at
the expense of the thermal energy of the star. In the event the time needed
for Biermann’s mechanism to establish fields typical of those on the Sun
for example proved to be rather too long. From the generalized Ohm’s
law (3.52) if no magnetic field is present initially show that this reduces
to E = −(mi/Zeρ)∇pe. Then from Faraday’s law, a magnetic field is
generated provided ∇ρ × ∇pe �= 0. For a spherically symmetric pressure
gradient, no magnetic field is generated.

(a) Consider next the case of a rotating star for which

∇p = ρ
(
g +�2r̄

)
(E5.1)

in which � denotes the angular velocity of the star and r̄ is the dis-
placement from the axis of rotation. Show that in the case of a rotating
star a toroidal magnetic field is generated.

(b) Generally, both ohmic and Hall terms in the generalized Ohm’s law act
to limit the growth of the field. In the case of the Sun, by balancing en-
ergy input from the battery against ohmic dissipation with appropriate
choices for parameters from Table 5.1 and using r̄� ∼ 2 × 103 m s−1,
show that the field B ∼ 0.01 T and that the time needed for the field
to evolve to this magnitude is about 109 years, the order of the age of
the Universe. However, it needs to be borne in mind that such rough
estimates are changed by allowing for convection.

(c) The battery mechanism has proved to be important as a source of mag-
netic fields generated in targets irradiated by intense laser light where
fields as large as O(100 T) have been detected over scale lengths of
O(100 µm). Check the estimate given for the strength of the magnetic
field generated.
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5.4 Verify that (5.32) is a solution of (5.31) and that this corresponds to the
solution curves sketched in Fig. 5.18. Show that the constant C = −3 for
the only acceptable solution for the solar wind represented by trajectory V .
What are possible explanations of why this solution does not predict the
correct density at the Earth?

5.5 Using the results in Section 5.5 for the Weber and Davis model of the
solar wind, obtain an expression for the magnitude of the interplanetary
magnetic field BIMF = (B2

r + B2
φ)

1/2 and show that (i) BIMF ∼ 1/r2 near
the Alfvén critical point r = rA and (ii) BIMF ∼ 1/r(log r)1/2 as r → ∞.

5.6 Derive the hydromagnetic Hugoniot relation (5.67) from (5.54)–(5.61) by
eliminating the velocity variables.

[Hint: First use (5.57), in the form ρ1ux1 = ρ2ux2 = k, say, to eliminate
ux in favour of k and then use the resulting (5.59) and (5.60) to eliminate
uy and uz . Next, write (5.58) in the form k2[1/ρ]2

1 = −[P + B2/2µ0]2
1]

and multiply by (ρ−1
1 + ρ−1

2 )/2 to obtain

k2

2

[
1

ρ2

]2

1

= −1

2

(
1

ρ1
+ 1

ρ2

)[
P + B2

2µ0

]2

1

Finally, substitute this equation, together with the converted (5.55) and
(5.56) in (5.61) to eliminate k and obtain (5.67).]

5.7 In a plane shock show that the unit vector normal to the shock, n̂, and
the magnetic fields on either side of the shock, B1 and B2, are coplanar
provided that the mass flux through the shock is non-zero (ρu · n̂ �= 0).

5.8 Use (5.77) to write (5.78) and (5.80) as

γ M2
1 (1 − 1/r) = R − 1

γ M2
1 (1 − 1/r2) = 2γ

γ − 1

(
R

r
− 1

)

By solving these equations for R, r and applying the condition R > 1
show that u1 is supersonic. Rewriting the equations in terms of M2 show
that u2 is subsonic.

Deduce that R 
 1 implies M1 
 1.
Verify (5.82).

5.9 For the perpendicular shock discussed in Section 5.6.3 it was shown that
u1 > c∗

s (1). By rewriting the equations in terms of the downstream vari-
ables M2 and β2 show that u2 < c∗

s (2).
Show also that for γ < 2, r < r0, where r0 is the solution for zero mag-

netic field. Hence, deduce from (5.86) that the introduction of a magnetic
field reduces the shock strength.
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From (5.87) and (5.88) show that for fixed β the temperature ratio in the
large Mach number limit is approximately the same as for the hydrody-
namic shock.
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Waves in unbounded homogeneous plasmas

6.1 Introduction

Historically studies of wave propagation in plasmas have provided one of the
keystones in the development of plasma physics and they remain a focus in con-
temporary research. Much was already known about plasma waves long before the
subject itself had any standing, early studies being prompted by practical concerns.
The need to allow for the effect of the geomagnetic field in determining propagation
characteristics of radio waves led to the development, by Hartree in 1931, of what
has become known as Appleton–Hartree theory. About the same time another basic
plasma mode, electron plasma oscillations, had been identified. In 1926 Penning
suggested that oscillations of electrons in a gas discharge could account for the
anomalously rapid scattering of electron beams, observed over distances much
shorter than a collisional mean free path. These oscillations were studied in detail
by Langmuir and were identified theoretically by Tonks and Langmuir in 1928.

Alfvén’s pioneering work in the development of magnetohydrodynamics led
him to the realization in 1942 that magnetic field lines, pictured as elastic strings
under tension, should support a class of magnetohydrodynamic waves. The shear
Alfvén wave, identified in Section 4.8, first appeared in Alfvén’s work on cosmical
electrodynamics. Following the development of space physics we now know that
Alfvén (and other) waves pervade the whole range of plasmas in space from the
Earth’s ionosphere and magnetosphere to the solar wind and the Earth’s bow shock
and beyond.

There is a bewildering collection of plasma waves and schemes for classifying
the various modes are called for. Plasma waves whether in laboratory plasmas or
in space are in general non-linear features. Moreover, real plasmas are at the same
time inhomogeneous and anisotropic, dissipative and dispersive. To avoid being
overwhelmed by detail at the outset some radical simplifications are needed and
so we begin by assuming that the medium is unbounded and consider only small
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disturbances so that a linear theory of wave propagation is adequate. Even this
is a tall order and to begin with we make a further approximation and ignore the
effects of plasma pressure. This allows us to discuss a number of electromagnetic
modes in some detail since thermal effects play only a minor role in their dispersion
characteristics. To make matters even more straightforward we move towards a
general dispersion relation in stages, first identifying modes that propagate along,
and transverse to, the magnetic field before dealing with oblique propagation. In
all of this we are helped by the natural ordering of the electron and ion masses in
separating modes into high and low frequency regimes. This ordering underpins a
classification of dispersion characteristics in terms of wave normal surfaces which
is discussed in outline for a cold plasma.

Dropping the cold plasma approximation and allowing for plasma pressure en-
ables us to identify other waves, in particular electrostatic modes. Thermal ef-
fects bring dissipation, not usually via inter-particle collisions, though these may
contribute particularly in partially ionized plasmas. In most plasmas of interest,
interactions between plasma electrons and ions and the waves themselves are more
important. Moreover, since these wave–particle interactions generally involve only
those particles with thermal velocities close to the phase velocity of the wave they
cannot be dealt with using a fluid model. Thus the discussion of the most important
of these interactions, Landau damping, has to await the development of kinetic
theory in Chapter 7.

6.2 Some basic wave concepts

Before embarking on a description of the propagation characteristics of small am-
plitude waves in plasmas we review briefly some basic wave concepts, familiar
from the theory of electromagnetic wave propagation. We restrict our discussion to
plane wave solutions of the wave equation, a plane wave being one for which the
wave disturbance is constant over all points of a plane normal to the direction of
propagation of the wave. For the plane wave solutions

E(r, t) = E0 exp i(k · r − ωt) B(r, t) = B0 exp i(k · r − ωt)

the vacuum divergence equations demand that k · E0 = 0 = k · B0 so that (E,B, k)
form a triad of orthogonal vectors.

The electric field in a plane wave is expressed in general by a superposition of
two linearly independent solutions of the wave equation. Choosing the z-axis along
the wave vector k gives

E(z, t) = (Ex x̂ + Ey ŷ) exp i(kz − ωt) (6.1)
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Fig. 6.1. Circularly polarized plane waves.

in which Ex , Ey are complex amplitudes

Ex = Ex0 exp(iα) Ey = Ey0 exp(iβ)

where Ex0, Ey0 are real. With δ = β − α, (6.1) becomes

E(z, t) = [Ex0x̂ + Ey0eiδŷ
]

exp i(kz − ωt + α) (6.2)

At each point in space the electric vector rotates in a plane normal to ẑ and as time
evolves its tip describes an ellipse. This is most easily seen by setting δ = ±π/2
so that

E(z, t) = (Ex0x̂ ± i Ey0ŷ) exp i(kz − ωt + α)

from which

Ex(z, t) = Ex0 cos(kz − ωt + α)

Ey(z, t) = ∓Ey0 sin(kz − ωt + α)

}
(6.3)

Thus in general an electromagnetic wave is elliptically polarized. In the special
case when Ex0 or Ey0 = 0 the electric field is linearly (or plane) polarized, while
if Ex0 = Ey0 the field is circularly polarized.

To an observer looking along the direction of propagation the negative sign in
(6.3) corresponds to an electric field vector, at any point z, rotating in a clockwise
direction. In this case, for Ex0 = Ey0 the wave is said to be right-circularly
polarized (RCP). For the positive sign, rotation is anticlockwise and the wave is
left-circularly polarized (LCP). Both polarizations are illustrated in Fig. 6.1.

With δ = ±π/2 and defining the wave polarization in terms of the complex
amplitudes in (6.2) by

P = i Ex/Ey

we see that P > 0(< 0) represents clockwise (anticlockwise) rotation and P =
+1(−1) indicates RCP(LCP).
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6.2.1 Energy flux

Defining the Poynting vector S = E × H allows us to describe the flux of energy
associated with electromagnetic fields. Poynting’s theorem is an expression of the
electromagnetic energy flux as a balance between the rate of change of energy in
the elecromagnetic field, with energy density W = 1

2 (E · D + B · H), and power
dissipated ohmically in the system, j · E. Then at any instant

∂W

∂t
+ ∇ · S = −j · E (6.4)

With harmonic time dependence, the time-averaged energy flux becomes

〈S〉 = 1

2
�(E × H∗) (6.5)

The time-average of ∂W/∂t vanishes, leaving, for sources contained in a volume
V bounded by a closed surface σ with unit normal vector n,∫

σ

〈S〉 · n dσ = −1

2
�
∫

V
〈E · j∗〉dV (6.6)

For a dissipation-free system �〈E · j〉 vanishes and so there is no net energy flux
averaged over a cycle.

6.2.2 Dispersive media

So far we have considered only monochromatic waves. In practice even with such
a monochromatic source as a laser there will be a spread in frequency ω and
wavenumber k. Moreover in general ω = ω(k) so that a wave-form that is not
monochromatic will change as it propagates, exhibiting dispersion. Consider, for
example, scalar waves propagating along the z-axis; using a Fourier representation

E(z, t) = 1√
(2π)

∫ ∞

−∞
a(k) exp[i(kz − ω(k)t)] dk (6.7)

and ω = ω(k) is known as the dispersion relation. Equation (6.7) and

a(k) = 1√
(2π)

∫ ∞

−∞
E(z, 0)e−ikz dz

define a wave packet. Assume, for convenience, that a(k) is peaked about some
wavenumber k0. The central question is this: ‘Given a particular wave packet at
t = 0 (the pulse shape), what does it look like at some later time?’ Provided the
medium is not too dispersive, ω(k) may be expanded about k0:

ω(k) = ω0 +
(

dω

dk

)
k=k0

(k − k0)+ · · ·
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Fig. 6.2. Dispersion curve for electromagnetic wave.

where ω0 stands for ω(k0) and so

E(z, t) = 1√
(2π)

∫ ∞

−∞
a(k) exp{i[kz − ω0t − (dω/dk)k0(k − k0)t]} dk

Then

E(z, t) 	 E(z − vgt, 0) exp[i(k0vg − ω0)t] (6.8)

which represents a pulse travelling without distortion with a velocity vg =
(dω/dk)k=k0 . This is the group velocity. The group velocity appears in this con-
text as the propagation velocity of a wave packet, a concept first introduced by
Hamilton.

To relate vg to the phase velocity vp = ω/k is straightforward:

vg = dω

dk
= d

dk
(kvp) = vp + k

dvp

dk

or equivalently in terms of the wavelength

vg = vp − λ
dvp

dλ

Clearly, when the phase velocity is independent of wavelength there is no disper-
sion. Such is the case for the shear Alfvén wave introduced in Section 4.8. For
dvp/dλ > 0, vg < vp and the wave is said to exhibit normal dispersion. An electro-
magnetic wave propagating in a plasma provides an example of normal dispersion
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since its dispersion relation (obtained in Section 6.3.1) is ω2 = ω2
p + k2c2, which

means that dω/dk = kc2/ω = c2/vp. Since vp = ω/k > c, it follows that vg < c
as shown in Fig. 6.2.

6.3 Waves in cold plasmas

As discussed in Section 3.5, a cold plasma is one in which the thermal speeds of
the particles are much smaller than the phase speeds of the waves and the cold
plasma wave equations, given in Table 3.4, are simply the ion and electron equa-
tions of continuity and motion in the electromagnetic fields, which are governed
by Maxwell’s equations.

Since we shall discuss only small amplitude waves we shall be concerned with
the linearized version of the cold plasma equations, namely

∂n1

∂t
+ ∇ · (n0u1) = 0 (6.9)

∂u1

∂t
= e

m
(E1 + u1 × B0) (6.10)

∇ × E1 = −∂B1

∂t
(6.11)

∇ × B1 − 1

c2

∂E1

∂t
= µ0j = µ0

∑
en0u1 (6.12)

∇ · E1 = q

ε0
= 1

ε0

∑
en1 (6.13)

∇ · B1 = 0 (6.14)

where the species label has been suppressed but the sums in (6.12) and (6.13) are
over species and

n = n0 + n1

u = u1

E = E1

B = B0 + B1


 (6.15)

with the quantities n0 and B0 being constant in time and space. Thus, the lin-
earization describes a small departure from a plasma in equilibrium. The closed
set of two-fluid wave equations is actually (6.9)–(6.12) (remembering that (6.9)
and (6.10) must be written for ions and electrons), since (6.13) and (6.14) are
essentially initial conditions; if they are satisfied at some time t0, we can show
that they must be satisfied at all other times.

In the usual way we eliminate B1 from (6.11) and (6.12) to get

∇ × ∇ × E1 = − 1

c2

∂2E1

∂t2
− µ0

∂j
∂t

(6.16)



6.3 Waves in cold plasmas 203

Next, using the second equality in (6.12) and solving (6.10) for u1, we obtain j in
terms of E1 which we may express formally as

j = σ · E1 (6.17)

where σ is the conductivity tensor. Then, assuming all variables vary like
exp i(k · r − ωt), (6.16) becomes

n × (n × E1) = −E1 − i

ε0ω
σ · E1 = −ε · E1 (6.18)

where n = ck/ω is a dimensionless wave propagation vector and ε is the cold
plasma dielectric tensor. The requirement that this equation should have a non-
trivial solution yields the dispersion relation containing all the information about
linear wave propagation in a cold plasma.

To find the elements of σ (and hence ε) we must solve (6.10), the components
of which, dropping the subscript 1 and writing � = eB0/m, are

−iωux −�uy = eEx/m (6.19)

−iωuy +�ux = eEy/m (6.20)

−iωuz = eEz/m (6.21)

and then substitute the results in the expression for j in (6.12). This is straight-
forward but we can minimize the computation involved by first carrying out the
calculation for the variables, ũ, Ẽ, ̃ with components

u± = ux ± iuy, uz

E± = Ex ± i Ey, Ez

± = x ± iy, z


 (6.22)

since the conductivity tensor σ̃, defined by

̃ = σ̃ · Ẽ (6.23)

is diagonal. By combining (6.19) and (6.20) in obvious ways we get the solutions

u± = ieE±

m(ω ∓�)
, uz = ieEz

mω
(6.24)

and substituting in

̃ =
∑
α

eαn0αũ (6.25)
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we see, by comparison with (6.23), that

σ̃ = iε0




∑
α

ω2
pα

ω −�α

0 0

0
∑
α

ω2
pα

ω +�α

0

0 0
∑
α

ω2
pα

ω




(6.26)

Now from (6.22) it follows that the matrix that transforms u, E and j to ũ, Ẽ, ̃ is

T =

 1 i 0

1 −i 0
0 0 1




and its inverse

T−1 =

 1/2 1/2 0

−i/2 i/2 0
0 0 1




Thus, from (6.23) we obtain

j = T−1 · ̃ = T−1 · σ̃ · T · E

and, comparing with (6.17), we see that

σ = T−1 · σ̃ · T

giving

σ =

 (σ̃11 + σ̃22)/2 i(σ̃11 − σ̃22)/2 0

−i(σ̃11 − σ̃22)/2 (σ̃11 + σ̃22)/2 0
0 0 σ̃33


 (6.27)

where the components of σ̃ are as in (6.26).
Now, returning to (6.18), we may write the dielectric tensor components

εi j = δi j + (i/ε0ω)σi j , that is

ε =

 S −i D 0

i D S 0
0 0 P


 (6.28)
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where

S = 1
2(R + L) = 1 − ω2

p(ω
2 +�i�e)

(ω2 −�2
i )(ω

2 −�2
e)

D = 1
2(R − L) = ω2

pω(�i +�e)

(ω2 −�2
i )(ω

2 −�2
e)

R = 1 − ω2
p

(ω +�i)(ω +�e)

L = 1 − ω2
p

(ω −�i)(ω −�e)

P = 1 − ω2
p

ω2




(6.29)

and ω2
p = ω2

pi + ω2
pe is the square of the plasma frequency. Note that, in combining

the elements σ̃11 ± σ̃22, we have used the fact that ω2
pe�i + ω2

pi�e = Ze3 B0(ne0 −
Zni0)/mem iε0 = 0 because of equilibrium charge neutrality.

Finally, without loss of generality, we may choose axes such that n =
(n sin θ, 0, n cos θ), as shown in Fig. 6.3, so that (6.18) may be written

(n · E)n − n2E + ε · E = 0

and hence
 S − n2 cos2 θ −i D n2 cos θ sin θ

i D S − n2 0
n2 cos θ sin θ 0 P − n2 sin2 θ




 Ex

Ey

Ez


 = 0 (6.30)

Thus, taking the determinant of the coefficients, the general dispersion relation for
cold plasma waves is

An4 − Bn2 + C = 0 (6.31)

where

A = S sin2 θ + P cos2 θ

B = RL sin2 θ + P S(1 + cos2 θ)

C = P RL


 (6.32)

We treat this as an equation to be solved for n2 as a function of θ , the angle of prop-
agation relative to the magnetic field B0; the dimensionless quantities ωp/ω, �i/ω,
�e/ω, occurring in the coefficients (see (6.29)), are to be regarded as parameters
which vary according to choice of wave frequency and equilibrium plasma.
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Fig. 6.3. Orientation of wave propagation vector relative to magnetic field.

Since a general discussion of the solutions of (6.31) is algebraically challenging,
our approach will be to look initially at waves propagating parallel (θ = 0) and
perpendicular (θ = π/2) to the magnetic field. To this end a useful alternative
expression of (6.31) is obtained by solving it for tan2 θ as a function of n2 with the
result

tan2 θ = − P(n2 − R)(n2 − L)

(Sn2 − RL)(n2 − P)
(6.33)

There can be only real solutions of (6.31) for n2 since in the cold, non-streaming,
plasma equations there are no sources of free energy to drive instabilities and no
dissipation terms to produce decaying waves and it is a simple matter to prove
this formally by showing that the discriminant of the bi-quadratic equation may be
written in the form

B2 − 4AC = (RL − P S)2 sin4 θ + 4P2 D2 cos2 θ ≥ 0 (6.34)

Thus, n is either pure real or pure imaginary corresponding to wave propagation
or evanescence, respectively. The changeover from propagation to evanescence (or
vice versa) takes place whenever n2 passes through zero or infinity. From (6.31)
and (6.32), it is clear that the first of these possibilities occurs whenever C = 0,
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that is

P = 0 or R = 0 or L = 0 (6.35)

These are called cut-offs because, for given equilibrium conditions, they define
frequencies above or below which the wave ceases to propagate at any angle (k →
0 for finite ω, i.e. vp → ∞). From (6.29) the cut-off frequencies are:

P = 0 : ω = ωp

R = 0 : ω = [ω2
p + (�i −�e)

2/4]1/2 − (�i +�e)/2 ≡ ωR

L = 0 : ω = [ω2
p + (�i −�e)

2/4]1/2 + (�i +�e)/2 ≡ ωL


 (6.36)

Note that we have chosen the positive square root in order to get ω > 0; we
consider only positive ω since solutions with ω < 0 merely correspond to waves
travelling in the opposite direction. Note, also, that ωR > ωL since �e < 0 and
|�e| 
 �i.

At a resonance vp → 0 (k → ∞ for finite ω) but this does not in general mean,
as at a cut-off, that the wave ceases to propagate altogether; rather, it defines a
cone of propagation. Letting n2 → ∞ in (6.31) shows that we require A = 0, i.e.
tan2 θ = −P/S. This equation defines for given parameters the resonant angle,
θres, above or below which the wave does not propagate; indeed, directly from
(6.33) we get

tan2 θres = −P/S (6.37)

Here we note that θres, if it exists, lies between 0 and π/2 because the dispersion
relation, being a function only of sin2 θ and cos2 θ , is symmetric about θ = 0 and
θ = π/2. Physically, these are manifestations of the azimuthal symmetry about the
direction of the magnetic field B0 and the symmetry with respect to the direction of
wave propagation k. Thus, a wave that experiences a resonance propagates either
(a) for 0 ≤ θ < θres but not θres < θ ≤ π/2 or (b) for θres < θ ≤ π/2 but not
0 ≤ θ < θres, as indicated in Fig. 6.4. From this we can see that when θres → 0 in
case (a) or θres → π/2 in case (b) the wave does disappear altogether. These are
called the principal resonances and like the cut-offs they define, again for given
equilibrium conditions, frequencies above or below which a particular wave does
not propagate.

From (6.37) the principal resonances occur at

θres = 0 : P = 0 or S = 1

2
(R + L) → ∞ (6.38)

θres = π/2 : S = 0 (6.39)

The first possibility in (6.38) is a degenerate case because when P = 0 and θ = 0
all the coefficients A, B, and C vanish; indeed, we have seen already that P = 0
is also a cut-off where n2 = 0. Exactly what occurs here depends on the order in



208 Waves in unbounded homogeneous plasmas

Fig. 6.4. Wave propagation cones.

which one takes the limits θ → 0 and n2 → 0 and nothing is gained by pursuing
a general discussion of this case. The second possibility provides the interesting
cases because either

R → ∞ as ω → −�e = |�e| (6.40)

which is the electron cyclotron resonance, or

L → ∞ as ω → �i (6.41)

which is the ion cyclotron resonance.
From (6.39) and (6.29) we see that the principal resonances at θ = π/2 occur

when

ω4 − ω2(ω2
p +�2

i +�2
e)−�i�e(ω

2
p −�i�e) = 0

which has the solutions

ω2 =
(
ω2

p +�2
i +�2

e

2

)
1 ±

(
1 + 4�i�e(ω

2
p −�i�e)

(ω2
p +�2

i +�2
e)

2

)1/2

 (6.42)

Unlike the cyclotron resonances at θ = 0 which involve either the ions or the
electrons, these perpendicular resonances involve both ions and electrons together
and are known, therefore, as the hybrid resonances. Since the second term in the
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square root in (6.42) is always much less than unity we may expand the square root
to obtain the approximate solutions

ω2
UH 	 (ω2

p +�2
i +�2

e) 	 ω2
pe +�2

e (6.43)

ω2
LH 	 −�i�e(ω

2
p −�i�e)

ω2
p +�2

i +�2
e

	
{ |�i�e| (ω2

p 
 �2
e)

ω2
pi +�2

i (ω2
p � �2

e)
(6.44)

where the subscripts UH and LH denote the upper hybrid and lower hybrid reso-
nances, respectively.

We shall discuss the physics of cut-offs and principal resonances as we meet the
waves affected by them. We can now set out to investigate various special cases. By
doing this systematically we shall find that the final picture that emerges enables
us to construct a comprehensive picture of cold plasma wave propagation.

6.3.1 Field-free plasma (B0 = 0)

When there is no magnetic field there is no preferred direction so that without loss
of generality we may take n to be in the z-direction, i.e. θ = 0. Also, from (6.29),
S = P and D = 0 so that (6.30) takes the particularly simple diagonal form



1 − ω2
p

ω2
− n2 0 0

0 1 − ω2
p

ω2
− n2 0

0 0 1 − ω2
p

ω2




 Ex

Ey

Ez


 = 0 (6.45)

Clearly, there are two types of wave in this case. Either E = (0, 0, Ez) and

ω2 = ω2
p (6.46)

or Ez = 0 and

ω2 = ω2
p + k2c2 (6.47)

The first of these solutions corresponds to the well-known, longitudinal plasma
oscillations. Note that the terms longitudinal (k ‖ E) and transverse (k ⊥ E)
indicate the direction of wave propagation relative to the electric field, E, while the
terms parallel and perpendicular indicate the direction of k relative to B0.

In this cold plasma limit the group velocity vg = dω/dk = 0, i.e. this wave does
not propagate; if the disturbance producing the wave is local it remains so. It is an
electrostatic wave as we can see from (6.11) that B1 = 0.
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The second solution (6.47) has k ⊥ E so this is a transverse wave. Since k2 < 0
for ω2 < ω2

p we see that 0 < ω < ωp is a stop-band for transverse waves in a
magnetic field-free plasma. The physical reason for this is simply that ωp is the
natural frequency with which the plasma responds to any imposed electric field.
If the frequency of such a field is less than ωp the plasma particles are able to
respond quickly enough to neutralize it and it is damped out over a distance of
about |k|−1. This will be recognized as the first of the cut-offs, P = 0 in (6.36). The
dispersion curve is sketched in Fig. 6.2, showing the characteristic behaviour of a
cut-off, ω → ωp (in this case) as k → 0. As the frequency increases, the influence
of the plasma decreases and the dispersion curve approaches the asymptote for
propagation in vacuum, ω = kc.

6.3.2 Parallel propagation (k ‖ B0)

When wave propagation is along the magnetic field, θ = 0 and (6.30) becomes
 S − n2 −i D 0

i D S − n2 0
0 0 P




 Ex

Ey

Ez


 = 0 (6.48)

This shows, as in the field-free case, that the longitudinal [E = (0, 0, Ez)] and
transverse [E = (Ex , Ey, 0)] waves are decoupled and that the dispersion relation,
P = 0, i.e. ω2 = ω2

p, for the former is unchanged. This is only to be expected for
the applied field B0 lies in the direction of the plasma oscillations so that there is
no Lorentz force and therefore no effect on this mode.

The dispersion relation for the transverse waves can be obtained from (6.48) but
we can get it and its solution directly from (6.33) on putting θ = 0; eliminating the
longitudinal wave (P = 0), the solutions are

n2 = R = 1 − ω2
p

(ω +�i)(ω +�e)
(6.49)

n2 = L = 1 − ω2
p

(ω −�i)(ω −�e)
(6.50)

The R and L modes, as we may call them, have cut-offs at ωR and ωL (see (6.36))
and principal resonances at |�e| and �i (see (6.40) and (6.41)). Remembering that
�e < 0, it is clear from (6.49) and (6.50) that n2 > 0 at the very lowest frequencies
(ω → 0) and as ω → ∞ for both of these modes. Thus, the stop-bands lie between
|�e| and ωR, and �i and ωL, for the R and L modes, respectively.

In order to sketch the dispersion curves for the propagating frequencies we take
the high and low frequency limits of (6.49) and (6.50). The high frequency limit
is easily dealt with for, as ω → ∞, both equations give the dispersion relation,
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ω = kc, for transverse waves in vacuo. However, as we reduce ω the terms in
(6.49) and (6.50) containing the natural frequencies come into play and we get the
approximate dispersion relations

R : ω2 = k2c2 + ωω2
p

ω − |�e| (6.51)

L : ω2 = k2c2 + ωω2
p

ω + |�e| (6.52)

From these equations it is clear that the phase velocity of the R mode is greater
than that of the L mode so that we may label them fast and slow, respectively. Also
the R mode cut-off (k → 0) occurs above ωp, whilst that of the L mode lies below
ωp; it is easily verified that ωR and ωL in (6.36) agree with the k → 0 limit of (6.51)
and (6.52) on neglecting terms in �i/|�e|.

Turning now to the low frequency limit of (6.49) and (6.50) and noting that
ω2

p/�i�e = (c/vA)
2 we obtain in both cases

ω2 = k2v2
A

1 + (vA/c)2
(6.53)

We can compare this result with the low frequency Alfvén waves discussed in
Section 4.8. There we found three modes, the fast and slow magnetoacoustic waves
and the (intermediate) shear Alfvén wave. For parallel propagation the magne-
toacoustic waves decoupled into the compressional Alfvén wave and an acoustic
wave with ω = kcs. In a cold plasma cs → 0 so the acoustic wave is the slow
wave and disappears in this limit. Thus, the R and L modes may be identified
with the two Alfvén waves. The slight discrepancy between (6.53) and the result
ω = kvA obtained from the ideal MHD equations may be traced directly to the
retention of the displacement current in the cold plasma equations; it disappears in
the non-relativistic limit (vp ≈ vA � c).

To discover which of our two cold plasma modes is the fast, compressional wave
and which the intermediate, shear wave we must resolve the degeneracy in (6.53)
by keeping the next most significant term in ω. This means keeping the ω in (ω ±
�i) whilst still ignoring it in (ω±�e). Then in the non-relativistic limit (6.49) and
(6.50) give

R : ω2 = k2v2
A(1 + ω/�i)

L : ω2 = k2v2
A(1 − ω/�i)

}
(6.54)

Thus, the R mode is the fast, compressional Alfvén wave with phase velocity vp >

vA and the L mode is the intermediate, shear Alfvén wave with vp < vA.
Collecting all this information about the R and L modes we can sketch their

dispersion relations as shown in Figs. 6.5 and 6.6. Both modes have dispersion
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Fig. 6.5. Dispersion curves for R mode.

curves which are asymptotic to ω = kvA and ω = kc at low and high frequencies,
respectively. The horizontal asymptotes in both figures are at cut-offs (k → 0) or
principal resonances (k → ∞).

Note that only the relevant cut-off and principal resonance affects a given wave
so that the R mode continues to propagate above ω = �i but as it does so its phase
velocity departs further and further from the Alfvén speed vA. Choosing a value of
ω such that �i � ω � |�e| and using the non-relativistic condition vp � c, we
may write (6.49) as

ω 	 k2c2|�e|/ω2
p (6.55)

which is the dispersion relation for whistler waves, so-called because they prop-
agate in the ionosphere at audio-frequencies and can be heard as a whistle of
descending pitch. They are triggered by lightning flashes and travel along the
Earth’s dipole field. From (6.55) we see that ω ∝ k2 so both the phase velocity
(ω/k) and the group velocity (dω/dk) increase with k. This is what gives rise to
the whistle; from a pulse initially containing a spread of frequencies the higher
frequency waves travel faster arriving earlier at the detection point than the lower
frequency waves and so a whistle of descending pitch is heard.

Near the principal resonances it is easy to show from (6.49) and (6.50) that the
dispersion relations for the electron cyclotron and ion cyclotron waves are given
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Fig. 6.6. Dispersion curves for L mode.

approximately by

R : ω = |�e|(1 + ω2
p/k2c2)−1 	 |�e|(1 + ω2

pe/k2c2)−1 (6.56)

L : ω = |�i|(1 + ω2
pi/k2c2)−1 (6.57)

respectively. To understand the physical origin of these resonances we note that
(6.48) gives

P = i Ex

Ey
= n2 − S

D
= 2n2 − (R + L)

R − L
=
{ +1 (n2 = R)

−1 (n2 = L)

showing that the R wave is RCP and the L wave is LCP. In Section 2.2 we saw that
the electrons (ions) rotate about the magnetic field in a right (left) circular motion.
Thus, the electric field of each wave rotates in the same sense as one of the particle
species. So long as the wave frequency ω is less than the cyclotron frequency no
resonance occurs but as the frequency of the R(L) wave approaches |�e|(�i) the
electrons (ions) experience a near constant field and are continuously accelerated
resulting in the absorption of the wave energy by the particles. The group velocity
of both waves, vg ∼ k−3 → 0 as k → ∞.
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6.3.3 Perpendicular propagation (k ⊥ B0)

Putting θ = π/2 in (6.30) gives
 S −i D 0

i D S − n2 0
0 0 P − n2




 Ex

Ey

Ez


 = 0 (6.58)

and we see that one of the solutions is the transverse wave with E ⊥ k, i.e. E =
(0, 0, Ez), and dispersion relation n2 = P . This is the same wave found in the
field-free case (see (6.47) in Section 6.3.l†) which is unaffected by the introduction
of the magnetic field B0. As with the longitudinal plasma oscillations for parallel
propagation, this is because the electric field, Ez , makes the particles move parallel
to B0 and therefore produces no Lorentz force. This wave which is independent of
the magnetic field, is known as the ordinary (O) mode.

The dispersion relation for the other wave, called the extraordinary (X) mode, is
most easily obtained from (6.33) and is given by

n2 = RL

S
(6.59)

Thus, the X mode has cut-offs (k → 0) at ωR (R = 0) and ωL (L = 0) and
resonances (k → ∞) at the upper and lower hybrid frequencies (S = 0). By
careful examination of (6.36), (6.43) and (6.44) we may show that ωR ≥ ωUH ≥
ωL ≥ ωLH (with equality only for either n0 or B0 = 0) and hence deduce that the
stop-bands for the X mode lie in the frequency intervals ωLH to ωL and ωUH to ωR.
Also, we may write (6.59) as

ω2

k2c2
= S

RL
= 1

2

(
1

R
+ 1

L

)
(6.60)

and by inspection of (6.29), we see that R, L → 1 as ω → ∞ so that the X
mode dispersion relation is asymptotic to ω = kc in this limit. Then as ω decreases
the first cut-off occurs at ωR and the mode is evanescent until we reach the first
resonance (ωUH) at S = 0. The X mode then propagates again until ωL is reached
where the L = 0 cut-off occurs. There is then another stop-band until the lower
hybrid frequency ωLH is reached at which propagation recommences down to ω =
0. As ω → 0, R, L → c2/v2

A so the dispersion curve is asymptotic to ω = kvA.
These observations are summarized in Fig. 6.7.

The dispersion curve for the O mode is shown in Fig. 6.2 and, as discussed
earlier, the stop-band extends from ω = 0 to ω = ωp. Below ωp there is, therefore,
at most only the X mode propagating perpendicular to the magnetic field. At
the very lowest frequencies (ω → 0) this is clearly the compressional Alfvén

† Note that in Section 6.3.1 the choice of axes was different with k = (0, 0, k) and E = (Ex , Ey , 0).
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Fig. 6.7. Dispersion curves for X mode.

wave since the shear Alfvén wave propagates along B0 but not perpendicular
to it. Whereas at parallel propagation the compressional Alfvén wave becomes
the whistler and then the electron cyclotron wave as it approaches resonance, at
perpendicular propagation it becomes the lower hybrid wave as resonance is ap-
proached. Note, also, that resonance is reached at a lower frequency (ωLH < |�e|)
for perpendicular propagation. Between ωLH and |�e| the resonant angle, given by
(6.37), decreases from π/2 to 0 so that the cone of propagation (see Fig. 6.4(b))
narrows as the frequency increases until the wave is suppressed completely at
ω = |�e|.

The physical mechanism of the lower hybrid resonance is more complicated than
the simple cyclotron resonances because both types of particle are involved. From
(6.44) we see that the lower hybrid frequency is proportional to the geometric mean
of the cyclotron frequencies and for sufficiently high density (ω2

p 
 �2
e) we have

�i � ωLH = (�i|�e|)1/2 � |�e|. Thus, on a time scale of the lower hybrid period
the ions are effectively unmagnetized and they oscillate back and forth in response
to the electric field. From (6.58) we see that as ω → ωLH, i.e. S → 0, Ey → 0 and
so the equation of motion of the ions to lowest order is

m i ẍ = ZeE
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giving an ion displacement in the x direction of magnitude

(�x)i ∼ ZeE/m iω
2

The ion displacement in the y direction is of first order and given by

m i ÿ = −Zeẋ B0

from which we get

(�y)i ∼ �i

ω
(�x)i (6.61)

The electrons, on the other hand, are magnetized and rotate about the field lines
many times in a lower hybrid period. But superimposed on the Larmor orbits there
is an oscillating E × B drift. The governing equations for the electrons are

me ẍ = −eE − eẏ B0 (6.62)

me ÿ = eẋ B0 (6.63)

From (6.63) we get

(�y)e ∼ |�e|
ω

(�x)e (6.64)

and substituting this in (6.62) gives

(�x)e ∼ eE

me(�2
e + ω2)

≈ eE

me�2
e

From (6.61) and (6.64) we see that the x displacement of the ions is much
greater than their y displacement while the opposite is true for the electrons and,
for ω < (�i|�e|)1/2, we have |(�x)i| > |(�x)e| so that the average motion of ions
and electrons is as shown in Fig. 6.8(a). However, as ω → ωLH = (�i|�e|)1/2,
(�x)i → (�x)e and the picture is as shown in Fig. 6.8(b). Now the ions and
electrons not only oscillate in phase but maintain charge neutrality so the field
cannot be maintained and the wave ceases to propagate.

For lower densities (ω2
p � �2

e) the lower hybrid frequency decreases towards
�i with the result that the ion motion becomes more circular (see (6.61)) while
the average electron motion becomes more elongated and |(�x)e| � |(�x)i|.
Consequently, the role of the electrons in maintaining the space charge responsible
for the electric field is diminished and the resonance becomes predominantly an
ion affair with ωLH 	 (ω2

pi + �2
i )

1/2. The resonance occurs when the ion motion
in the x direction, which is a resultant of direct response to the electric field and
Larmor oscillation about B0, is in phase with the electric field.

Similarly, at the upper hybrid resonance, although nominally both types of parti-
cle are involved, the motion of the ions is insignificant at this very high frequency,
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Fig. 6.8. Average particle orbits in lower hybrid wave for (a) ω < ωLH, (b) ω → ωLH.

ωUH = (ω2
p + �2

e + �2
i )

1/2 ≈ (ω2
pe + �2

e)
1/2, and the resonance is between the

electron motion and the electric field as can be seen from (6.62). Poisson’s equation
provides an order of magnitude for the electric field, E ∼ nee(�x)e/ε0, so that,
using (6.64) for (�y)e, (6.62) gives

ω2(�x)e ∼ (ω2
pe +�2

e)(�x)e

This is a second example of the symmetries found in the cold plasma wave theory
between electron properties at high frequency and ion properties at low frequency,
the first being the simple cyclotron resonances.

A final observation from (6.58) is that

P = i Ex

Ey
= −D

S
= L − R

L + R

so that in general the X mode is elliptically polarized although this becomes linear
at the resonances (S → 0), as already noted, and circular at the cut-offs; the wave
is RCP at ω = ωR (R = 0) and LCP at ω = ωL (L = 0).

6.3.4 Wave normal surfaces

Much information about cold plasma waves has been obtained by examining the
special cases of parallel and perpendicular propagation. We shall now show that by
combining the results of the last two sub-sections with some of the properties of the
general dispersion relation we can make deductions about the waves propagating
at oblique angles (0 < θ < π/2) to the magnetic field B0.

First, let us summarize some of the properties of the solutions of the general
dispersion relation (6.31):
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(i) There are two solutions which are distinct except where the discrimi-
nant (6.34) vanishes. Except for the discrete points in parameter space where
the surfaces RL = P S and P D = 0 intersect, the discriminant can vanish
only at θ = 0 or π/2. For oblique propagation, therefore, we can use this
distinction to label one of the solutions the fast (F) wave and the other the
slow (S) wave. By extrapolation this labelling can be used at θ = 0 and π/2,
also, even when the discriminant vanishes at these angles. Since n2 = c2/v2

p

we have n2
F < n2

S.

(ii) The phase velocity of a propagating wave may remain finite at all angles or
may tend to zero (k → ∞) as θ → θres. In the latter case the wave propagates
in only one of the cones shown in Fig. 6.4. If both waves propagate and one
of them suffers a resonance this must be the S wave. It can be shown (see
Stix (1992)) that, if both waves propagate, at most one of them can suffer a
resonance.

(iii) If the waves propagate at θ = 0 one of them is the R wave and the other the L
wave. These, also, are useful identifying labels but it should be remembered
that the dispersion relations n2 = R, L apply only at θ = 0 and the properties
of RCP and LCP, likewise, do not apply at oblique propagation.

(iv) Similarly, the O and X labels may be used if the waves propagate at θ =
π/2 but, here again, one cannot extrapolate the dispersion relations n2 = P ,
n2 = RL/S nor is it true that the dispersion relation of the O wave remains
independent of the magnetic field for θ < π/2.

All this information may be neatly summarized by drawing the wave normal
surfaces at any given point in parameter space. The wave normal surface is a plot
of the phase velocity in spherical polar coordinates but since there is no dependence
on the azimuthal coordinate, φ, this reduces to a plane polar plot of vp versus θ , the
surface being generated by rotation of the figure about the polar (ẑ) axis. In view of
properties (i) and (ii) the only possible surfaces are the spheroid and lemniscoids
shown in Fig. 6.9; the lemniscoid with propagation at θ = 0 is called a dumb-bell
and that with propagation at θ = π/2 is called a wheel (imagine the polar plots
rotated about the polar axis).

If both waves propagate, the permissible combinations of wave normal surfaces
are two spheroids or a spheroid and a lemniscoid as illustrated in Fig. 6.10. Except
for the discrete points of parameter space mentioned in (i) the wave normal surfaces
may be tangential only at θ = 0 or π/2. Clearly the outer surface is the F wave and
we may add, as appropriate, the labels R or L at θ = 0 and O or X at θ = π/2. For
example, the wave normal surfaces for the compressional and shear Alfvén waves
in the low frequency regime (ω < �i, ωp) correspond to a spheroid and dumb-bell
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Fig. 6.9. Wave normal surfaces.

Fig. 6.10. Possible wave normal surfaces when both modes propagate.

lemniscoid, respectively. Ideal MHD suggests that these surfaces are tangential at
θ = 0 but (6.54) shows that this is true only in the limit ω → 0.

Now we come to the most important statement about the wave normal surfaces
for the compilation of a general classification scheme. The topology of the surfaces
can change only at the cut-offs and principal resonances. For example, at a cut-off
vp → ∞ so the F wave solution changes sign at infinity, i.e. a spheroid disappears.
At a principal resonance vp → 0 so a spheroid may become a lemniscoid. The
converse of this occurs when θres → 0(π/2) for a wheel (dumb-bell) lemniscoid.
Finally, lemniscoids disappear when θres → 0(π/2) for the dumb-bell (wheel).
This means that the cut-offs and principal resonances are the natural classification
boundaries in parameter space.

For a two-component plasma, parameter space is two dimensional and can be
represented by a diagram with α2 = ω2

p/ω
2 as abscissa and β2 = |�i�e|/ω2 as

ordinate; thus, the horizontal axis is the direction of increasing density or decreas-
ing frequency and the vertical axis is the direction of increasing magnetic field
or decreasing frequency. The cut-offs and principal resonances divide this space
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Fig. 6.11. Subdivision of parameter space by principal resonance and cut-off curves.

into thirteen regions which are numbered† alternately left and right of the plasma
cut-off P = 0 (i.e. α2 = 1) and with increasing β2, as shown in Fig. 6.11; the
figure is illustrative and is not drawn to any realistic scale of mass ratio.

Since all the boundaries of parameter space represent a specific frequency we
can deduce all the wave normal surfaces for the thirteen regions from the dispersion
diagrams for the R, L , O and X waves (see Figs. 6.2 and 6.5–6.7). These tell us
which of these waves propagate at θ = 0 and π/2 and, if both propagate, by
comparing the asymptotic behaviour, which is the F and which the S wave. For
example, Fig. 6.2 shows that the O mode propagates only for ω > ωp, i.e. in the
odd numbered regions to the left of P = 0. Also, by comparing Figs. 6.2 and
6.7 we see that the X mode is the F wave for ω > ωR (as k → 0, ωX → ωR

and ωO → ωp with ωR > ωp). Similarly, from Figs. 6.5 and 6.6, both R and
L modes propagate for ω > ωR and the R mode is clearly the F wave. Thus,
in region 1 (ω > ωR) both wave normal surfaces are spheroids, the F wave
having the labels R X and the S wave L O . In crossing the R = 0 (ω = ωR)

boundary the R X mode is cut-off (vp → ∞) and only the L O mode propagates in

† This numbering system is not universal; our choice follows Allis et al. (1963).
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Fig. 6.12. CMA diagram showing the wave normal surfaces for a cold plasma. The sur-
faces are not drawn to scale but the dashed circle represents the velocity of light in each
region (after Allis et al. (1963)).

region 3. In this manner one can traverse the whole of parameter space identifying
the wave normal surfaces† (see Exercise 6.8) and obtain Fig. 6.12, which is called
the Clemmow–Mullaly–Allis (CMA) diagram. The sketches of the wave normal
surfaces in Fig. 6.12 are schematic, merely indicating type. The actual shape varies
across the region; for example, the spheroidal wave normal surface of the SL X
mode in region 13 pinches in (vp → 0) at θ = 0 as one approaches the ω = �i

boundary in anticipation of the disappearance of the L mode on crossing this
boundary into region 11. Note that the S wave does not disappear completely at
this boundary but its wave normal surface changes from a spheroid to a wheel
lemniscoid; such a change is called a re-shaping transition. On the other hand, in

† There is one slight complication with the O and X labels in region 7; they switch waves across the surface
RL = P S because n2

X − n2
O = (RL − P S)/S.
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crossing the same boundary from region 12 to region 10, the cut-off of the L mode
does mean the complete disappearance of the S wave; this is called a destructive
transition. In contrast, the F wave experiences no significant change on crossing
this boundary and is said to undergo an intact transition.

6.3.5 Dispersion relations for oblique propagation

Since the boundaries of parameter space are all specified by particular frequencies
we can use this to find approximate dispersion relations by comparing ω in a given
region with its bounding frequencies and either expanding the coefficients in (6.32)
in the small parameter ω/ωB or ωB/ω (where ωB is the frequency at a boundary of
the region) or approximating the coefficients by letting ω → ωB. We have used this
technique already in the low frequency regime (region 12) by assuming ω/�i �
1 and ω/ωp � 1 and then later letting ω → �i. It is particularly useful when
comparing ω with the plasma and cyclotron frequencies for, as one can see from
(6.29), the parameters R, L , S and P can all be expressed in terms of α2 = ω2

p/ω
2,

β2 = |�i�e|/ω2, βi = �i/ω and βe = |�e|/ω:

S = 1 − α2(1 − β2)

(1 − β2
i )(1 − β2

e )

R = 1 − α2

(1 + βi)(1 − βe)

L = 1 − α2

(1 − βi)(1 + βe)

P = 1 − α2




(6.65)

Low frequency regime (ω < �i)

Let us use this method to recover the dispersion relations in region 12 for arbitrary
angles of propagation. We may choose ω � �i and ω � ωp giving

S, R, L ≈ 1 + α2/β2 = 1 + γ (γ = c2/v2
A)

and

P ≈ −α2

Substituting these approximations in (6.32) we get

A ≈ 1 + γ − (1 + γ + α2) cos2 θ

B ≈ (1 + γ )[(1 + γ − α2)− (1 + γ + α2) cos2 θ ]

C ≈ −α2(1 + γ )2
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and (6.31) factorizes to give the solutions

n2
1 = 1 + γ (6.66)

n2
2 = α2(1 + γ )

(1 + γ + α2) cos2 θ − (1 + γ )
(6.67)

The first solution is independent of θ so the wave normal surface is a sphere. The
second solution gives real values of n only for 0 ≤ θ ≤ θres, where cos2 θres =
(1 + γ )/(1 + γ + α2) so this wave normal surface is a dumb-bell lemniscoid
confirming the statement made in Section 6.3.4. The ideal MHD solutions, (4.122)
and (4.123) with cs = 0, are recovered in the non-relativistic and low frequency
limits γ, α2 → ∞.

Near the ion cyclotron resonance (ω → �i)

Next let us find the dispersion relations for oblique propagation as we approach the
ion cyclotron resonance at ω = �i. Here we let ω = �i(1 − ε), where 0 < ε � 1,
giving S ≈ γ /(2ε), R ≈ 1 + γ /2, L ≈ γ /ε and P ≈ −γ /µ, with µ ≡ �i/|�e| =
Zme/m i � 1. Substituting these approximations in (6.32) we get

A ≈ γ

2εµ
(µ sin2 θ − 2ε cos2 θ)

B ≈ − γ 2

2εµ
(1 + cos2 θ)

C ≈ − γ 2

2εµ
(2 + γ )

Since both µ and ε are small quantities it is clear that B2 
 |4AC | so that,
expanding the discriminant, the approximate solutions of (6.31) are

n2 = C

B
= 2 + γ

1 + cos2 θ
(6.68)

and

n2 = B

A
= γ (1 + cos2 θ)

(−µ sin2 θ + 2ε cos2 θ)
(6.69)

The first of these solutions, which may be written

ω2 = k2v2
A(1 + cos2 θ)

1 + 2v2
A/c2

≈ k2v2
A(1 + cos2 θ) (6.70)

is the generalization of (6.53) for compressional Alfvén waves propagating at ar-
bitrary angles as ω → �i. It shows the increase in phase velocity (vp ≈ vA

√
2) at
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θ = 0 as ω → �i (see Fig. 6.5); the wave normal surface is still a spheroid but no
longer a sphere.

The more interesting solution is (6.69) which is the dispersion relation for ion
cyclotron waves. It has a resonance at tan2 θres = 2ε/µ, confirming that θres → 0
as ε → 0 (i.e. ω → �i). Dropping the term in µ and rewriting (6.69) as n2 ≈
S(1 + cos2 θ)/ cos2 θ , where S ≈ −ω2

p�i/|�e|(ω2 −�2
i ), we get,

ω2 ≈ k2v2
A cos2 θ

1 + cos2 θ

(
�2

i − ω2

�2
i

)
(6.71)

as the generalization of (6.57) for ion cyclotron waves.

High frequency regime

Simple dispersion relations are obtainable whenever the discriminant (B2 − 4AC)
is a perfect square or can be expanded. Although the first of these possibilities
(which yielded the solutions (6.66) and (6.67)) occurs rarely, it is clear from (6.34)
that one can always find an expansion by letting θ → 0 or π/2; these denote the
quasi-parallel (Q‖) and quasi-perpendicular (Q⊥) approximations, respectively.
This method of approximation is particularly appropriate in the high frequency
regime which we consider next.

If ω 
 |�i�e|1/2 it follows from (6.65) that

S ≈ 1 − α2/(1 − β2
e )

R ≈ 1 − α2/(1 − βe)

L ≈ 1 − α2/(1 + βe)

P = 1 − α2


 (6.72)

and, since α2 ≈ ω2
pe/ω

2, it is clear that the effect of the ions on wave propagation
is negligible. This regime, which embraces all of regions 1–8 in the CMA diagram
(provided we are not too close to the S = 0 (ω = ωLH) boundary in region 8), has
been studied extensively in the context of waves in the ionosphere and gives rise to
magneto-ionic theory.

To establish contact with this theory it is convenient to cast the solution of (6.31)
in the form (see Exercise 6.11)

n2 = 1 − 2(A − B + C)

2A − B ∓ (B2 − 4AC)1/2
(6.73)

Using the approximations (6.72) this becomes

n2 = 1 − 2α2(1 − α2)

2(1 − α2)− β2
e sin2 θ ∓ �

(6.74)
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where

� = [β4
e sin4 θ + 4β2

e (1 − α2)2 cos2 θ ]1/2 (6.75)

Equation (6.74) is the collisionless Appleton–Hartree dispersion relation. We shall
consider it in the limits:

Q‖ : β2
e sin4 θ � 4(1 − α2)2 cos2 θ (6.76)

Q⊥ : β2
e sin4 θ 
 4(1 − α2)2 cos2 θ (6.77)

Quasi-parallel (θ → 0)

The Q‖ solutions are given by

n2 ≈ 1 − α2

1 ∓ βe cos θ
(6.78)

and comparison with (6.72) shows that the plus and minus signs correspond, in the
limit θ → 0, to the L and R waves, respectively. Thus, (6.78) is the generalization,
in the Q‖ limit, of (6.51) and (6.52), giving

ω2 = k2c2 + ωω2
p

ω ∓ |�e| cos θ

and showing that the high frequency dispersion relations for oblique propagation
are obtained from (6.51) and (6.52) by replacing |�e| by |�e| cos θ , i.e. the com-
ponent of the field along the direction of wave propagation.

For βe ≥ 1 the R wave has a resonance at cos θ = β−1
e . According to (6.78) this

occurs for any value of α2 but near a resonance we need to make a more careful
examination of the approximation. This is best done directly from (6.37) which
gives

tan2 θres = (α2 − 1)(β2
e − 1)

(α2 + β2
e − 1)

= β2
e − 1

1 + β2
e /(α

2 − 1)
(6.79)

showing that there is no real solution and, therefore, no resonance for α2 < 1 and
confirming that the resonance occurs at cos θ = β−1

e provided β2
e � α2 − 1, which

is consistent with the Q‖ approximation (6.76).

Quasi-perpendicular (θ → π/2)

Turning to the Q⊥ approximation we find from (6.74) the solutions

n2 = 1 − α2

1 − α2 cos2 θ
(6.80)



226 Waves in unbounded homogeneous plasmas

and

n2 = (1 − α2)2 − β2
e sin2 θ

(1 − α2)− β2
e sin2 θ

(6.81)

For α2 < 1 the first of these has n2 > 0 for all θ and reduces to (6.47) as θ → π/2
so this is the O mode. Rearranging (6.80) we get

ω4 − ω2(ω2
p + k2c2)+ k2c2ω2

p cos2 θ = 0

with the approximate solutions

ω2 ≈ (ω2
p + k2c2)

[
1 − k2c2ω2

p cos2 θ

(ω2
p + k2c2)2

]
(6.82)

and

ω2 ≈ ω2
p cos2 θ

1 + ω2
p/k2c2

(6.83)

Only the first solution (6.82) has α2 < 1 so this is the generalization of (6.47)
showing a marginal decrease in phase velocity for propagation of the O mode
away from the perpendicular direction. The second solution (6.83) has α2 > 1 and,
from (6.80), we see that it propagates only for 0 ≤ θ < cos−1(α−1). This is, in fact,
the Q⊥ approximation of the R mode dispersion relation for α2, β2 > 1, as we can
see from (6.79). The symmetry of this equation with respect to α and β shows that
for 1 < α2 � β2

e − 1 the resonance occurs at cos θ = α−1. Given that region 6 has
1 < α2 < 2 and 1 < β2

e < |�e|/�i − 1, (6.83) is appropriate in this region except
near the electron cyclotron resonance or θ = 0.

The second solution (6.81) in the Q⊥ approximation is the dispersion relation
for the X mode. For perpendicular propagation this was given by (6.59) and if we
substitute for R, L and S from (6.72) in this equation we get

n2 = (1 − α2)2 − β2
e

1 − α2 − β2
e

Comparing this with (6.81) we see that the high frequency dispersion relation for
the X mode, in the Q⊥ approximation, is obtained simply by replacing |�e| by
|�e| sin θ , i.e. the component of the field perpendicular to the direction of wave
propagation. The resonance occurs at

sin2 θres = 1 − α2

β2
e

which has real solutions only for 0 < 1 − α2 < β2
e and, checking against the

exact (6.79), we see that we must add to this the condition β2
e < 1. Rewriting these
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limits as α2 < 1, β2
e < 1, α2 + β2

e > 1, we see that this is region 5 and putting
ω = (1 − ε)(ω2

p +�2
e sin2 θ)1/2, where again 0 < ε � 1, we find

ω ≈ (ω2
p +�2

e sin2 θ)1/2[1 − ω2
p�

2
e sin2 θ/2k2c2(ω2

p +�2
e sin2 θ)]

for the dispersion relation near the resonance.

6.4 Waves in warm plasmas

Cold plasma theory has shown clearly the existence of a large number of waves in
an anisotropic, loss-free plasma. The theory is valid provided the plasma is cold, i.e.
the thermal velocity is much smaller than vp. This approximation obviously breaks
down near a resonance where the phase velocity vp → 0. We shall now consider
some finite temperature modifications of the theory, still within the confines of a
fluid description. This we may do by adding pressure terms to the fluid equations
although we underline a fundamental difference between cold and warm plasma
theory. Whereas cold plasma theory is properly a fluid theory, to describe warm
plasma behaviour fully we need to make use of kinetic theory. In part this is because
pressure is due to particle collisions which may lead to wave damping. However,
even in a dissipation-free plasma the fluid equations give an incomplete picture of
warm plasma wave motion.

A prime example of the shortcomings of the fluid approach appears in the
description of electron plasma waves. In the cold plasma limit, these are simply
oscillations at ω = ωp, i.e. they do not propagate. In a finite temperature plasma,
on the other hand, the dispersion relation is ω2 = ω2

p + k2V 2 where the thermal
velocity V is given by

V 2 = (γikBTi0/m i + γekBTe0/me) (6.84)

Moreover, this result is obtained (for sufficiently small k) regardless of whether we
use the fluid equations or kinetic theory. However, from a kinetic theory treatment,
additional information is retrieved that is lost in fluid theory; in particular, we find
that electron plasma waves in an equilibrium plasma are damped even though inter-
particle collisions are negligible. This phenomenon, known as Landau damping,
comes about because those electrons which have thermal velocities approximately
equal to the wave phase velocity interact strongly with the wave. The physical
consequences of such an interaction (wave damping in this example) are lost to a
fluid analysis because of the averaging over individual particle velocities.

These shortcomings notwithstanding, a fluid description provides a simpler in-
troduction than kinetic theory to wave characteristics in warm plasmas and we use
it to give an indication of what new modes may arise and to see what modification
of cold plasma modes may occur. We shall assume isotropic pressure and no heat
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flow; although it is simple enough, in the presence of a strong magnetic field, to
justify a diagonal pressure tensor and no heat flow perpendicular to the magnetic
field, the assumptions of equal parallel and perpendicular pressures and zero paral-
lel heat flow are no more than mathematical expediencies in a collisionless theory.
Thus we add pressure gradients to the equations of motion and use the adiabatic
gas law

pαn−γα
α = const. (6.85)

to close the set of equations as in Table 3.5. The linearized equations are now

∂nα
∂t

+ nα0∇ · uα = 0 (6.86)

nα0mα

∂uα
∂t

+ ∇pα − nα0eα(E + uα × B0) = 0 (6.87)

pα
pα0

− γαnα
nα0

= 0 (6.88)

and the Maxwell equations (6.11)–(6.14); as before, variables with subscript zero
are equilibrium values and those without subscript are the perturbations. Assuming
plane wave variation ∼ exp i(k · r −ωt) and eliminating all variables but ui and ue

we arrive, after some tedious but straightforward algebra, at the equations

−ω2ui + V 2
i (k · ui)k +
ω2

pi

(k2 − ω2/c2)

[
k · (ui − ue)k − ω2

c2
(ui − ue)

]
+ iω�i(ui × b0) = 0

(6.89)

−ω2ue + V 2
e (k · ue)k +

ω2
pe

(k2 − ω2/c2)

[
k · (ue − ui)k − ω2

c2
(ue − ui)

]
+ iω�e(ue × b0) = 0

(6.90)

where

V 2
i = γi pi0

ni0m i
= γikBTi0

m i

V 2
e = γe pe0

ne0me
= γekBTe0

me


 (6.91)

and b0 is the unit vector in the direction of B0.

6.4.1 Longitudinal waves

A simple case which illustrates both finite temperature modification of earlier re-
sults and the emergence of a new warm plasma mode arises when propagation and
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motion are parallel to B0; from (6.87) it follows that E is parallel to k so these are
longitudinal waves. Thus, (6.89) and (6.90) become

(ω2 − k2V 2
i − ω2

pi)ui + ω2
piue = 0 (6.92)

ω2
peui + (ω2 − k2V 2

e − ω2
pe)ue = 0 (6.93)

and the dispersion relation is

(ω2 − k2V 2
i − ω2

pi)(ω
2 − k2V 2

e − ω2
pe)− ω2

piω
2
pe = 0

with solution

ω2 = 1

2
(ω2

p +k2V 2)


1 ±

[
1 − 4(k4V 2

i V 2
e + k2V 2

i ω
2
pe + k2V 2

e ω
2
pi)

(ω2
p + k2V 2)2

]1/2

 (6.94)

Usually V 2
i � V 2

e , so that the second term in the square root is small and the
solutions are

ω2 ≈ ω2
p + k2V 2 (6.95)

ω2 ≈ k4V 2
i V 2

e + k2V 2
i ω

2
pe + k2V 2

e ω
2
pi

ω2
p + k2V 2

(6.96)

The first of these solutions, (6.95), may be further approximated to

ω2 = ω2
pe + k2γekBTe/me (6.97)

which is the dispersion relation for electron plasma waves or Langmuir waves and
shows an important change from the cold plasma result. Instead of electron plasma
oscillations we now have longitudinal waves which propagate with group velocity

vg = dω

dk
= kV 2

ω

The ion terms in (6.95) are negligible compared with the electron terms and like-
wise, from (6.93), the ion flow velocity |ui| � |ue|. Essentially, the ions provide a
static neutralizing background for the electron plasma waves.

We now turn to the second solution (6.96) which vanishes in the cold plasma
limit and is, therefore, a new dispersion relation for ion waves. Using (6.91) it may
be written

ω2

k2
≈ γikBTi0

m i
+ ZγekBTe0

m i(1 + k2λ2
D)

(6.98)



230 Waves in unbounded homogeneous plasmas

This is the dispersion relation for the ion acoustic wave. However, there is a fun-
damental distinction between this mode and a sound wave in a neutral gas which
propagates on account of collisions. The potential energy to drive the ion acoustic
wave is electrostatic in origin and is due to the difference in amplitudes of the
electron and ion oscillations. In ion acoustic waves ions provide the inertia while
the more mobile electrons neutralize the charge separation.

Finally consider ion waves in the limit ω2
p � k2V 2

e . In this case (6.96) becomes

ω2 ≈ ω2
pi + k2V 2

i (6.99)

the ion counterpart to electron plasma waves. Comparison with (6.95) shows the
symmetry between ion and electron waves which one would expect from the basic
equations. Note that the retention of the ω2

pi term in (6.99) implies Ti0 � Te0. Also,
from (6.92), we now have |ue| � |ui| and the electrons provide a neutralizing
background for the ion plasma oscillations; however, because of their high thermal
velocities they play a dynamic rather than a static role. In fact these observations
are academic since Landau damping restricts the propagation of these waves to a
narrow band of wavelengths such that (Ti0/Te0)

1/2λD � λ � λD.

6.4.2 General dispersion relation

The general dispersion relation (which may be obtained from (6.89) and (6.90))
gives six roots for ω2 corresponding to each wavenumber; these fall naturally into
a high frequency group and a low frequency group. For propagation along B0, the
high frequency group consists of RCP and LCP electromagnetic waves and the
longitudinal electron plasma wave.

We shall not draw the CMA diagram for warm plasma waves, as the wave normal
surfaces are now considerably more complicated than in the cold plasma limit.
Instead, a typical (ω, k) dispersion plot is shown in Fig. 6.13 for a low β plasma
with |�e| < ωpe. The high frequency curves come from the Appleton–Hartree
dispersion relation (6.74) in which ion motion and pressure terms are ignored; since
vp is large the cold plasma approximation is good. The low frequency curves are
due to Stringer (1963) and refer to a plasma having β = 10−2, vA/c = 10−3,
cs/vA = 10−1, Vi/cs = 0.33 and θ = 45◦. The value chosen for β ensures that the
high and low frequency parts of the (ω, k) diagram are well separated.

Stringer obtained the dispersion relation for the three low frequency modes from
the linearized two-fluid equations (6.86)–(6.88) and the Maxwell equations by
combining the ion and electron momentum equations into a one-fluid equation of
motion

ρ0
∂u
∂t

= −∇P + j × B0 (6.100)
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Fig. 6.13. Dispersion curves for oblique waves in low β plasma with |�e| < ωpe (after
Stringer (1963)).

where P = pe + pi, and a generalized Ohm’s law

∂j
∂t

= n0e2

me
(E + u × B0)− e

me
j × B0 + e

me
∇pe (6.101)

Then from the curl of the induction equation

∇ × ∇ × E = µ0
∂j
∂t

(6.102)

on neglect of the displacement current. In the derivation of (6.101) terms of order
Zme/m i have been ignored but, in fact, this equation may be obtained directly from
(3.70) by taking the νc → 0 limit; note that σ = nee2/meνc.

Now replacing ∇ by ik and ∂/∂t by −iω, (6.102) becomes

iωµ0j = k2E − (k · E)k (6.103)
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and substituting this in the left-hand side of (6.101) gives

QE − c2

ω2
pe

(k · E)k + u × B0 + i pe

n0e
k − 1

n0e
j × B0 = 0 (6.104)

where Q = (1 + k2c2/ω2
pe).

Next, without loss of generality, we may choose k = (k, 0, 0) and B0 =
B0(cos θ, 0, sin θ), so that (6.103) gives

jx = 0
Ey = iωµ0 jy/k2

Ez = iωµ0 jz/k2


 (6.105)

and (6.100) gives

ux = i B0 jy sin θ/ρ0ω(1 − k2c2
s /ω

2)

uy = i B0 jz cos θ/ρ0ω

uz = −i B0 jy cos θ/ρ0ω


 (6.106)

where c2
s = (γe pe0 + γi pi0)/ρ0 and we have used (6.86) and (6.88) to replace P by

P = (γe pe0k · ue + γi pi0k · ui)/ω

= [γe pe0(k · u − k · j/n0e)+ γi pi0k · u]/ω

= (γe pe0 + γi pi0)k · u/ω

since jx = 0. Finally, substituting (6.105) and (6.106) in (6.104) yields a vector
equation, involving j as the only unknown, the y and z components of which are[

Qµ0ω

k2
− B2

0

ρ0ω

(
cos2 θ + sin2 θ

(1 − k2c2
s /ω

2)

)]
jy + im i B0 cos θ

eρ0
jz = 0

− im i B0 cos θ

eρ0
jy +

(
Qµ0ω

k2
− B2

0 cos2 θ

ρ0ω

)
jz = 0

Equating the determinant of the coefficients of this equation to zero gives Stringer’s
dispersion relation[(ω

k

)4
−
(ω

k

)2 (
c2

s + v2
A/Q

)+ c2
s (v

2
A/Q) cos2 θ

]

×
[(ω

k

)2
− (v2

A/Q) cos2 θ

]
−
(
ωv2

A

�i Q

)2 (
ω2

k2
− c2

s

)
cos2 θ = 0

(6.107)
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Table 6.1. Dispersion curves (Fig. 6.13): slow branch

Section Mode Dispersion relation Physical characteristics

O3N slow magneto- ω = kcs cos θ E almost longitudinal
acoustic kcs � �i coupling electron and

ion fluids

P∞ second ion ω = �i cos θ longitudinal wave
cyclotron kcs 
 �i E ‖ k

Table 6.2. Dispersion curves (Fig. 6.13): intermediate branch

Section Mode Dispersion relation Physical characteristics

O2F oblique ω = kvA cos θ P < 0
Alfvén ω � �i

GH first ion ω = �i[1 + (k2c2
s /�

2
i ) sin2 θ P = −1: Below �i

cyclotron −(�2
i /k2v2

A)(1 + sec2 θ)]1/2 magnetic energy
cs�i/(vA cos θ) � kcs ∼ �i drives the wave;

above �i plasma
pressure dominates

IJ ion ω = kcs longitudinal wave
acoustic �i < kcs < ωpi E ‖ k

The waves and approximate dispersion relations corresponding to the three low
frequency branches (labelled slow, intermediate and fast) are given in Tables 6.1–
6.3. Conditions which apply throughout the tables are c2

s � v2
A and me/m i �

cos2 θ .
The first thing to note in Fig. 6.13 is the appearance of the additional, slow

branch (O3NP∞), corresponding to the slow magnetoacoustic wave discussed in
Section 4.8. We have seen already that the cold plasma modes at low frequencies
correspond to the fast magnetoacoustic and intermediate, shear Alfvén waves. In
fact, we can recover the results of Section 4.8 from (6.107) by taking the low
frequency limit ω � �i. In this case the (ω/�i)

2 term may be neglected leaving
a dispersion relation equivalent to (4.121) but with v2

A/Q replacing v2
A. However,

for c2
s � v2

A the slow mode has ω ≈ kcs cos θ , independent of vA, while the
other two modes have ω ∼ kvA, so that c2k2/ω2

pe � Zme/m i giving Q ≈ 1,
and the solutions (4.122) and (4.123) are recovered. The wave normal surfaces for
these waves in the ideal MHD approximation and for cs < vA are sketched in
Fig. 6.14.
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Table 6.3. Dispersion curves (Fig. 6.13): fast branch

Section Mode Dispersion relation Physical characteristics

O1A fast magneto- ω = k(v2
A + c2

s sin2 θ)1/2 P > 0
acoustic ω � �i

BC whistler ω 	 (k2v2
A/�i) cos θ P ≈ +1; for ω > �i ion

�i � kvA cos θ role decreases on
account of inertia

CD electron ω 	 |�e| cos θ P = +1; electron velocity
cyclotron |�e| < ωpe increase ⊥ B0 is

limited by increase ‖ B0
to maintain charge
neutrality

Fig. 6.14. Phase velocity surfaces of MHD waves for vA > cs.

Let us now examine what happens as we approach the ion cyclotron frequency.
For the cold plasma we know that the intermediate wave disappears as the reso-
nance, which is at θ = π/2 for ω � �i, approaches θ = 0 as ω → �i. To find
the resonances of the low frequency warm plasma waves we let k → ∞ in (6.107)
giving

ω2 = �2
i cos2 θ(1 − c2ω2/v2

Aω
2
pe cos2 θ)2

which, ignoring terms of order me/m i, has the solutions

ω = �i cos θ, ω = |�e| cos θ (6.108)
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Now, writing (6.107) as(ω
k

)6
−
(ω

k

)4 [
c2

s + (v2
A/Q)(1 + cos2 θ)

]+
(ω

k

)2
{
(v2

A/Q) cos2 θ

[
2c2

s + (v2
A/Q)

(
1 − ω2

�2
i

)]}
+

v4
Ac2

s cos2 θ

Q2�2
i

(ω2 −�2
i cos2 θ) = 0

we may neglect the last term in the neighbourhood of the resonance at ω = �i cos θ
and solve the resulting bi-quadratic for the other two modes, obtaining

ω2

k2
≈ c2

s + v2
A(1 + cos2 θ) (6.109)

and

ω2

k2
≈ v2

A cos2 θ [2c2
s + v2

A(1 − ω2/�2
i )]

c2
s + v2

A(1 + cos2 θ)
(6.110)

Here we have again put Q = 1 since c2k2/ω2
pe ∼ Z2me/m i � 1. We can identify

these modes by letting cs → 0 in which case (6.109) reduces to (6.70) for the
compressional Alfvén wave and (6.110) to (6.71) for the ion cyclotron wave. Thus,
(6.109) is the dispersion relation for the fast magnetoacoustic wave and (6.110) is
for the shear Alfvén–ion cyclotron mode at ω ≈ �i cos θ . The interesting point
about (6.110) is that the resonance stays at θ = π/2 as ω → �i and does not
migrate towards θ = 0. Consequently, there is no destructive transition at �i and
the mode persists for ω > �i. The sharp reduction in vp due to the vanishing
of the second term in the square bracket in (6.110) at ω = �i gives rise to a
so-called pseudo-resonance, indicated by the GH section of the intermediate wave
dispersion curve in Fig. 6.13. The mode is called the first ion cyclotron wave in this
region (ω ≈ �i) to distinguish it from the slow wave, which has a true resonance
(ω ≈ �i cos θ for all k so vp → 0 as k → ∞ for all θ ) at ω = �i, and is
called the second ion cyclotron wave. Thus, consideration of finite temperature has
(i) introduced the slow magnetoacoustic wave which then disappears at the ion
cyclotron resonance and (ii) demonstrated the continuation of the shear Alfvén–
first ion cyclotron mode to frequencies above �i.

To find approximate dispersion relations for the fast and intermediate modes
between the ion and electron resonances we may take �i � ω � |�e|. Since
ω/k ∼ cs or vA all terms in (6.107) are of similar magnitude except for the last one
which has the factor (ω/�i)

2. Thus, dropping all terms but this, one solution is

ω2 = k2c2
s (6.111)
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i.e. the ion acoustic wave. Then rewriting (6.107) in the form

(ω
k

)6
−
(ω

k

)4
[c2

s + (v2
A/Q)(1 + cos2 θ)] +(ω

k

)2
(2c2

s + v2
A/Q)(v2

A/Q) cos2 θ − c2
s (v

4
A/Q2) cos4 θ +(

ω

�i

)2 (
c2

s −
(ω

k

)2
)
(v4

A/Q2) cos2 θ = 0

we may neglect the third and fourth terms compared with the final term and,
anticipating that the second solution for c2

s � v2
A has ω/k � vA, we may also

drop the second term and the c2
s in the final term leading to the result

ω ≈ k2v2
A cos θ

�i
= k2c2|�e| cos θ

ω2
pe

(6.112)

where we have again put Q = 1 since k2c2/ω2
pe ∼ ω/|�e| � 1. This is the general-

ization for non-zero θ of (6.55), the dispersion relation for the whistler wave. Thus,
between the resonances the intermediate wave emerges from the pseudo-resonance
and propagates at a reduced phase velocity as an ion acoustic wave while the fast
wave follows its cold plasma behaviour becoming a whistler.

As the electron cyclotron resonance at ω = |�e| cos θ is approached the pat-
tern of behaviour seen at the ion cyclotron resonance is repeated. The slower
(intermediate) wave suffers the destructive transition, which in the cold plasma
was the fate of the fast wave, while the fast wave undergoes a pseudo-resonance
and survives to continue propagation above ω = |�e|, but at the reduced phase
velocity ω/k = Vi. Both of these occurrences can be attributed to the appearance
of the new, longitudinal, warm plasma mode discussed in Section 6.4.1; see (6.96).
The coupling of transverse and longitudinal waves that occurs for θ �= 0 enables
the first ion cyclotron wave to emerge from the ion cyclotron resonance as the
ion acoustic wave (6.98). Likewise, the electron cyclotron wave emerges from the
electron cyclotron resonance as the ion plasma wave, the mode described by (6.99).

Longitudinal modes are not well described by (6.107) for the neglect of the dis-
placement current in its derivation implied k·j = 0, i.e. zero space charge. Stringer,
therefore, derived an electrostatic dispersion relation from which the approximate
results (shown in the tables) in the neighbourhood of these transitions are found.

For sufficiently low β plasmas ωpe < |�e| and the high and low frequency
branches overlap. For such cases (6.107) becomes invalid at the overlap, i.e. for
ω > ωL ∼ ω2

pe/|�e|. An example is shown in Fig. 6.15 in which Stringer used the
Appleton–Hartree dispersion relation (6.74) to calculate the curve for the fast wave
for ω > ω2

pe/|�e|.
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Fig. 6.15. Dispersion curves for oblique waves in very low β plasma with ωpe < |�e|
(after Stringer (1963)).

In general, the dispersion curves do not change appreciably as θ is varied pro-
vided the values 0 and π/2 are avoided. As θ → 0, for example, the gap between
the first ion cyclotron–acoustic wave transition (HI in Fig. 6.13) and the slow
magnetoacoustic–second ion cyclotron wave transition (NP in Fig. 6.13) shrinks. In
the limit, the points (H, P) and (N, I) become coincident, that is, the curves O2G∞
and O3J now intersect. The transition from finite θ to 0 is shown in Fig. 6.16;
the presence of a transverse magnetic field couples longitudinal and transverse
wave components so that the transverse Alfvén wave passes into the longitudinal
acoustic wave while on the lower frequency branch a longitudinal mode passes into
a transverse mode. At θ = 0, however, no such coupling occurs and the transverse
shear Alfvén wave now becomes a transverse ion cyclotron wave, as in the cold
plasma limit, while the other branch O3J is now entirely longitudinal. A similar
transition occurs between the electron cyclotron wave and the ion acoustic wave.

The situation as θ → π/2 is more complicated and will not be discussed; a
typical dispersion plot for the three low frequency branches is shown in Fig. 6.17.
Observe that only the O1CE branch survives in the limit θ = π/2 and that the
lower hybrid frequency (at which a resonance appeared for θ = π/2 propagation
in the cold plasma limit) now reappears as a pseudo-resonance.
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Fig. 6.16. Coupling of longitudinal and transverse wave components in (a) for small θ
disappears in (b) for θ = 0.

Fig. 6.17. Dispersion curves for low frequency waves in low β plasma as θ → π/2.

6.5 Instabilities in beam–plasma systems

The waves that we have considered so far are those that may arise when we perturb
a plasma that is initially in equilibrium. In this section we take one step further
to investigate the perturbation of a steady state plasma; in particular, we allow
for non-zero flow velocities u0α. Interstreaming or beam-carrying plasmas are of
widespread interest so this is an important generalization. The most significant
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result of this extension of wave theory is the appearance of instabilities driven by
the plasma streams.

To keep the analysis as simple as possible we consider a cold, unmagnetized
plasma which, in the steady state, has interstreaming components. These may be
ions or electrons (or both) and there may also be a stationary background plasma.
Thus, the species label α now denotes the various components and we linearize the
cold plasma equations using, instead of (6.15),

n = n0 + n1

u = u0 + u1

E = E1

B = B1


 (6.113)

where n0 and u0 are constants, obtaining for the equations of continuity and motion

∂n1

∂t
+ ∇ · (n0u1 + n1u0) = 0 (6.114)

∂u1

∂t
+ (u0 · ∇)u1 = e

m
(E1 + u0 × B1) (6.115)

Note that we still have E0 = 0, otherwise there would be no steady state. For
longitudinal waves (∇ × E1 = 0) there is no magnetic field perturbation so, again
for simplicity, we consider this case. Then we need only Poisson’s equation

∇ · E1 = 1

ε0

∑
en1 (6.116)

to close the set.
Assuming that all perturbed quantities vary as exp i(k · r − ωt), it is a simple

matter to obtain

u1 = ieE1

m(ω − k · u0)

from (6.115) and substitute it in (6.114) to find

n1 = ien0kE1

m(ω − k · u0)2

Then from (6.116) we see that the condition for a non-trivial solution, E1 �= 0, is

∑
α

ω2
pα

(ω − k · uα)2
= 1 (6.117)

where ωpα and uα are, respectively, the plasma frequency and steady state stream-
ing velocity for species α. This is the dispersion relation for longitudinal waves in
a plasma containing particle streams. Note that if all the stream velocities are zero
we recover the dispersion relation for longitudinal plasma oscillations.
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Fig. 6.18. Schematic plot of F(vp).

6.5.1 Two-stream instability

To demonstrate the onset of instability let us simplify further to the case of just
two streams with velocities u1 and u2 which are parallel (if they are not, we can
transform to a frame in which they are) and consider waves propagating in the same
direction. Then we may re-write (6.117) as

F(vp) = ω2
p1

(vp − u1)2
+ ω2

p2

(vp − u2)2
= k2 (6.118)

where vp = ω/k. The function F(vp) is sketched in Fig. 6.18 and we see that for
large enough k2 there are four real solutions of (6.118). However, for k < kc there
are only two. Since (6.118) is a quartic equation in vp with real coefficients there
must be four roots and for k < kc two of these form a complex conjugate pair
vp = (ωr ± iγ )/k, representing exponentially growing and damped waves. The
growing wave solution is identified with the two-stream instability. The critical
value kc can be found by setting dF/dvp = 0 and is given by

k2
c =

(
ω

2/3
p1 + ω

2/3
p2

)3
/(u1 − u2)

2 (6.119)

On the basis of this analysis it appears that there will always be some waves, of
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Fig. 6.19. Two-stream instability dispersion relation showing the real and imaginary parts
of the frequency as functions of wavenumber.

long enough wavelength, which are unstable. This is another instance of the fluid
description proving to be misleading. We shall see in the next chapter that when we
allow for the thermal spread in particle velocities and analyse the problem using
kinetic theory there appears a threshold relative velocity between the streams below
which there is no instability for any value of k.

For counterstreaming beams penetrating one wavelength in a plasma period, a
perturbation in density δn1 on stream 1 will be amplified by particles bunching in
stream 2. And since δn1 ∝ n1, the perturbation grows exponentially in time. The
phase condition for this to occur is

|u1 − u2|(2π/ωp) ∼ (2π/k)

For u1 − u2 = 2v0 this gives the condition for growth of the perturbation, i.e.
k ∼ ωp/2v0.

In the case of opposing streams of equal strength we may put ωp1 = ωp2 = ωp

and u1 = −u2 = v0 and from (6.118) the dispersion relation is

ω2
p

(ω − kv0)2
+ ω2

p

(ω + kv0)2
= 1
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with solution

ω2 = k2v2
0 + ω2

p ± ωp[ω2
p + 4k2v2

0]1/2

From (6.119) we see that instability occurs in the range 0 < k <
√

2ωp/v0. The
maximum growth rate occurs at k = ωp

√
3/2v0, obtained by setting dω/dk = 0,

and is given by �ω = ωp/2. The dispersion curves for real and imaginary ω are
sketched in Fig. 6.19. The density perturbations grow until the electric fields which
they create become large enough to scatter the electrons causing dispersion in the
stream velocity which eventually extinguishes the instability.

6.5.2 Beam–plasma instability

We can also use (6.118) to discuss the instability which arises when a single elec-
tron beam with number density nb and plasma frequency ωpb flows with speed vb

through a stationary cold plasma. The dispersion relation is

ω2
p

ω2
+ ω2

pb

(ω − kvb)2
= 1 (6.120)

which may be written as

(ω2 − ω2
p)[(ω − kvb)

2 − ω2
pb] = ω2

pω
2
pb

where the left-hand side shows the four linear waves (two normal modes, a Lang-
muir wave and an electron beam mode), while the term on the right-hand side acts
as a coupling term for these modes.

From (6.119), instability occurs for k < kc where

kc = ωp

vb

[
1 +

(
ωpb

ωp

)2/3
]3/2

which, in the weak-beam limit, ωpb � ωp, becomes kc = ωp/vb. For this value the
beam modes have ω = ωp±ωpb so that the interaction is three-wave with ω = −ωp

well separated. By letting ω = ωp +�ω, k = ωp/vb +�k and keeping only terms
of lowest order in ωpb/ωp, (6.120) becomes

�ω(�ω − vb�k)2 = ωpω
2
pb/2

The maximum growth rate is then

γmax = √
3(ωpω

2
pb)

1/3/24/3 (6.121)

Dispersion curves in the weak-beam limit are sketched in Fig. 6.20.
There is an interesting formal similarity between (6.120) and the dispersion

relation for an instability that appears when electrons drift through a neutralizing
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Fig. 6.20. Dispersion curves for weak-beam–plasma system with nb/n0 = 2 × 10−3.

background of stationary ions. This instability, first identified by Buneman (1959),
will be discussed briefly in the next chapter since it is properly set in the context
of instabilities in warm plasmas. Leaving that aside, if we simply identify the
electron–ion drift velocity vd with vb in the weak-beam case, we may write the
dispersion relation in the cold plasma limit (in the rest frame of the electrons) in
one dimension as

ω2
pe

ω2
+ ω2

pi

(ω − kvd)2
= 1 (6.122)

Formally, ω2
pi plays the role of ω2

pb in (6.120) and so by analogy with (6.121) the
maximum growth rate for the Buneman instability is

γmax =
√

3

2
√

2

(
Zme

m i

)1/3

ωpe ≈ 0.05ωpe

for Z = 1.
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Two-stream and beam–plasma instabilities are widespread in both laboratory
and space plasmas. Large electric field fluctuations have been measured in space
plasmas and streaming instabilities have been detected at the boundary of the
plasma sheet. Enhanced fluctuations near the plasma frequency have been observed
upstream from the Earth’s bow shock and correlated with fluxes of energetic elec-
trons.

6.6 Absolute and convective instabilities

In this section we return to consider in more detail the interpretation of complex
solutions to the dispersion relations, examples of which appeared in Sections 6.5.1
and 6.5.2. In these examples we supposed that the wavenumber was real and found
pairs of complex roots in the dispersion relation, corresponding to modes that
were either damped or growing in time. In practice it is often more convenient
to look for complex roots of the wavenumber k, for real frequencies. Then the
complex conjugate pair correspond to modes that are evanescent, i.e. the amplitude
of a disturbance decays with distance from its source, or spatially amplifying.
Beam–plasma systems have some parallels with electron beam–circuit systems.
For example, in travelling wave tubes an input signal is amplified by interacting
with beam electrons travelling down the tube synchronously with the electromag-
netic wave. Twiss (1950, 1952) first drew attention to the distinct ways in which a
pulsed perturbation at some point in a physical system can evolve and emphasized
the need for a criterion to identify amplifying waves. Sturrock (1958) postulated
that the distinction between amplifying and evanescent waves is not dynamical but
kinematical and deciding which is which should be possible from a scrutiny of the
dispersion relation alone. However, to draw this distinction one has to consider not
a single mode but analyse instead the evolution of a wave packet.

A related problem appears when solving the dispersion relation for complex ω
roots in terms of real k. A wave packet may evolve in time in either of two distinct
ways. Considering for simplicity an unbounded system, a pulse that is localized
initially at some point may propagate away from its source, growing in amplitude
as it propagates, as represented in Fig. 6.21(a). Given a sufficiently long time the
disturbance decays with time at any fixed point in space. Instabilities with these
characteristics are classed as convective and the mode is said to be C-unstable. An
alternative outcome in Fig. 6.21(b) shows the initial pulsed perturbation spreading
across the entire region, with the amplitude of the disturbance growing in time
everywhere. Such instabilities are said to be absolute, the mode in question being
A-unstable. It is important to distinguish between these two possibilities. Clearly
one distinction can be drawn depending on the frame of the observer. An observer
in a frame moving faster than the speed at which an absolute instability spreads
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Fig. 6.21. Pulse amplification due to (a) convective and (b) absolute instability.

would classify the plasma as C-unstable. By contrast an observer in the frame
moving with the peak of the disturbance in Fig. 6.21(a) would see the mode as
A-unstable. Nevertheless, in practice there will usually be a preferred frame of
reference and hence a real physical distinction between convective amplification
and absolute instability. This distinction takes on particular significance in inhomo-
geneous plasmas where a mode may be unstable only over some localized region.
Then a convectively unstable mode can grow only as long as it is contained within
the unstable region. We shall return to this point in Chapter 11. While the terms
‘amplifying’ and ‘evanescent’ apply to the behaviour of modes with real ω, an
amplifying wave has essentially the same character as one that is C-unstable (real
k, complex ω).

6.6.1 Absolute and convective instabilities in systems with weakly coupled
modes

As an example of the classification of instabilities as absolute or convective we
consider a dissipation-free system in which two branches of the dispersion relation
correspond to distinct linear modes. In the absence of any interaction between the
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modes the dispersion relation simply factors into two branches, i.e.

(ω − ω1(k)) (ω − ω2(k)) = 0 (6.123)

In the neighbourhood of a crossing point P at (ω0, k0) between the two branches

ω1(k) 	 ω0 + (k − k0)v1

ω2(k) 	 ω0 + (k − k0)v2

}
(6.124)

and v1 and v2 are constant group velocities.
However, in general in the neighbourhood of such a point P the modes exhibit

coupling. If we suppose that this is weak then the dispersion relation for the coupled
modes in the neighbourhood of P may be represented by

[ω − ω0 − (k − k0)v1] [ω − ω0 − (k − k0)v2] = ε (6.125)

where ε is a small quantity. Equation (6.125) serves as a paradigm for mode-
coupling leading to instability in many physical systems including plasmas. Solv-
ing for ω(k) and for k(ω) gives in turn

ω(k)− ω0 = 1

2

[
(k − k0)(v1 + v2)± [(k − k0)

2(v1 − v2)
2 + 4ε2

]1/2
]

(6.126)

k(ω)− k0 = 1

2v1v2

[
(ω − ω0)(v1 + v2)±

[
(ω − ω0)

2(v1 − v2)
2+4εv1v2

]1/2
]

(6.127)
Admitting mode-coupling has the effect of shifting P into the complex plane. Rep-
resenting (ω − ω0) as a function of (k − k0) in Fig. 6.22 throws up four distinct
cases:

(a) ε > 0; v1v2 > 0 (c) ε < 0; v1v2 > 0
(b) ε > 0; v1v2 < 0 (d) ε < 0; v1v2 < 0

}
(6.128)

(a) The functions ω(k) are real for all real k and the system is stable. Moreover
the functions k(w) are real for all real ω and so the modes propagate without
amplification.

(b) Here ω(k) is real for all k and so the system is stable. However k(ω) is
complex across the range of ω given by

(ω − ω0)
2 < 4|εv1v2|/(v1 − v2)

2 (6.129)

There is no propagation over this range, i.e. the modes are evanescent.
(c) In this case there are complex roots of ω(k) for real k and of k(ω) for real ω.

For

(k − k0)
2 < 4|ε|/(v1 − v2)

2 (6.130)
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Fig. 6.22. Dispersion curves for weakly coupled modes.

the ω(k) are complex and one of the pair has �ω = ωi (k) > 0 and so is unstable.
The instability is convective since for |ω| → ∞ the roots k(ω) are approximately
ω/v1 and ω/v2 and when ωi → ∞, they fall in the same half k-plane. For v1,
v2 > 0 they lie in the upper half k-plane. For real ω in the range (6.129) the roots
k(ω) form a complex conjugate pair. The root with ki (ω) < 0 has crossed to the
lower half-plane. Across the frequency range defined by (6.129) waves propagating
in the positive x-direction will amplify.

(d) Here k(ω) is real for all real ω but ω(k) is complex across the range (6.130).
The system is therefore unstable. Since v1v2 < 0 as ω → ∞ it follows that the
roots k(ω) fall in opposite half-planes. The roots coalesce at a point in the upper
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half ω-plane for which

ω = ωc = ω0 + 2i

(√
(εv1v2)

|v1 − v2|
)

(6.131)

This corresponds to an absolute instability with growth rate ωci .

Exercises

6.1 Obtain expressions for the phase and group velocities of the following
modes:

(i) Alfvén: ω2 = k2c2/(1 + c2/v2
A)

(ii) whistler: ω = −k2c2�e/ω
2
p

(iii) electron cyclotron (ω → |�e|): ω2 − ωω2
p/(ω +�e) = k2c2

6.2 Using the data in Table 1.1, compute Alfvén wave speeds for plasmas in
(i) interstellar space, (ii) solar corona, (iii) ionosphere and (iv) tokamak.
Assume that the positive charges are protons in (i), (ii) and (iv) and oxygen
(O+) ions in (iii).

6.3 The energy density of a wave propagating in a plasma is the sum of con-
tributions from the oscillating electric and magnetic fields and from the
coherent particle motion induced by these fields. Suppose that the fields
show a small degree of exponential growth so that their behaviour with
time is described by exp(−iωR + γ )t where γ � ωR. The rate of change
of the energy density averaged over a period is given by

dW

dt
= 1

2
�(E∗ · j)+ 1

4

∂

∂t

[
ε0|E |2 + |B|2

µ0

]

where ∗ denotes the complex conjugate. Writing

ji = iωε0[δi j − εi j (ω)]E j

where ω denotes the complex frequency ω = ωR + iγ , show, using a
Taylor expansion along with the relation (∂/∂t)|E |2 = 2γ |E |2, that the
wave energy density may be expressed in the form

W = 1

4

[
ε0 E�

i

∂

∂ω
(ωεi j )E j + |B|2

µ0

]

Apply this result to an electromagnetic wave propagating in an isotropic
plasma (B = 0), identifying the contribution to the energy density from
coherent particle motion.
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Fig. 6.23. Measurement of the dependence of Alfvén wave phase velocity on
axial magnetic field in a hydrogen plasma compared with theory (after Wilcox et
al. (1960)).

6.4 By introducing a term into (6.10) to allow phenomenologically for the ef-
fects of electron–ion collisions through a collision frequency νei, show that
the dispersion relation for electromagnetic waves in an isotropic plasma
becomes

c2k2

ω2
= 1 − ω2

p

ω(ω + iνei)

Hence show that electromagnetic waves are damped as a result of electron–
ion collisions, with damping coefficient γ = νei(ω

2
p/2ω2).

6.5 Figure 5 shows the Alfvén wave velocity, as a function of the axial mag-
netic field, measured in a hydrogen plasma by Wilcox, Boley and De
Silva (1960). The plasma temperature was 1 eV and the proton density
5 × 1021 m−3. Using the cold plasma dispersion relation plot the Alfvén
velocity as a function of magnetic field. Verify that the cold plasma ap-
proximation is valid in this parameter range. How might the discrepancy
between the measured phase velocities and those from the simple Alfvén
dispersion relation be explained?

6.6 Show that the dispersion relation for a wave propagating orthogonally to a
magnetic field B0 with its electric vector aligned with B0 is ω2 = ω2

p+k2c2.
Explain the physical significance of this result.

6.7 Show that the points of intersection of the plasma cut-off P = 0 with the
plasma resonance S = 0 and cyclotron cut-offs L = 0 in a two-component,
cold plasma occur at α2 = 1, βi = 1 − me/m i and α2 = 1, β2

i = 1 −
me/m i + (me/m i)

2, respectively.
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6.8 Verify the topological representation of the wave normal surfaces in the
CMA diagram, Fig. 6.12.

6.9 The wave normal surfaces corresponding to fast and slow modes coincide
when the discriminant (6.34) vanishes. Find the modes propagating along
the magnetic field for which this is possible.

For propagation orthogonal to the magnetic field show that there is a
curve in the CMA diagram on which coincidence is possible and obtain its
equation.

6.10 Determine the group velocity vg of the ion cyclotron wave satisfying the
dispersion relation (6.71) and show that vg → 0 as ω → �i. Show that the
wave is elliptically polarized, becoming LCP at the resonance frequency.

6.11 Derive (6.73) from (6.31). [Hint: Write (6.31) as n2 = (An2 − C)/(An2 +
A − B) and then substitute the biquadratic solution of (6.31) for n2 on the
right-hand side.]

6.12 Determine the conditions under which the second term in the discriminant
in (6.94) is not small compared with unity.

Show that in ion acoustic waves, electron and ion velocities are of com-
parable magnitude.

6.13 Show that in a homogeneous isotropic plasma the conduction current and
displacement current in Langmuir waves cancel exactly.

6.14 Show that the dispersion relation for obliquely propagating ion cyclotron
waves in a warm plasma is

k2c2
s

ω2
= 2�2

i c2
s + v2

A(�
2
i − ω2)

v2
A(�

2
i cos2 θ − ω2)

Rearrange this in the form ω = ω(k) and from this show that, in the
long wavelength limit (k2c2

s � �2
i ), ω

2 	 �2
i + k2c2

s sin2 θ . This mode
is electrostatic as is the mode in the limit k2c2

s 
 �2
i . Write down the

dispersion relation for this case.
6.15 Consider how the ion cyclotron resonance changes when a plasma contains

two ion species, as for example in the solar wind which consists of protons
with helium ions as the principal minority constituent.

Plot dispersion curves k2v2
A/ω

2 versus ω/� for a plasma with 80%
protons and 20% He++ ions for θ = 0 and θ = π/2.

Show that as propagation switches from θ = 0 towards θ = π/2 the
resonances move from the cyclotron frequencies to the frequencies deter-
mined by S = 0, with one of the resonant frequencies shifted to

ω2
H−He = ω2

pH�
2
He + ω2

pHe�
2
H

ω2
pH + ω2

pHe
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while the other is displaced to lower frequencies.
6.16 Confirm that (6.120) can be written as a three-wave interaction as

kvb/ωp → 1. Show that the maximum growth rate, corresponding to
�k = k − ωp/vb = 0, is given by (6.121).
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Collisionless kinetic theory

7.1 Introduction

Much of plasma physics can be adequately described by fluid equations, namely,
the MHD or wave equations. However, these are derivative descriptions in which
some information about the plasma has been suppressed. In situations where that
information matters it is necessary to go to a deeper level of physical description.

The information that gets lost in a fluid model is that relating to the distribution
of velocities of the particles within a fluid element, since the fluid variables are
functions of position and time but not of velocity. Any physical properties of the
plasma that depend on this microscopic detail can be discovered only by a descrip-
tion in six-dimensional (r, v) space. Thus, instead of starting with the density of
particles, n(r, t), at position r and time t , we begin with the so-called distribution
function, f (r, v, t), which is the density of particles in (r, v) space at time t . The
evolution of the distribution function is described by kinetic theory.

With the additional information on particle velocities within a volume element
introduced by a phase space description we now have microscopic detail that we
did not have before. For that reason, kinetic and fluid theories are identified as
microscopic and macroscopic, respectively.

At the most fundamental level we may define the distribution function in terms
of the individual particle positions and velocities by

fK(r, v, t) =
N∑

i=1

δ[r − ri (t)]δ[v − vi (t)] (7.1)

where the sum is over all particles of a given type. This is the Klimontovich dis-
tribution function which we have denoted by fK to distinguish it from f . It is
a very spiky function being zero throughout (r, v) space except at the N points
[r = ri (t), v = vi (t)] where it is doubly infinite. However, we can generate a
smoother function by integrating (7.1) over a volume element �r�v about the

252
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point (r, v) which is large enough to contain a number of particles Np(r, v, t) 
 1
but small enough that

f (r, v, t) = 1

�r�v

∫
�r

dr
∫
�v

dv fK = Np(r, v, t)

�r�v
(7.2)

does not change significantly over the dimensions of the volume element. Thus,
f (r, v, t) is the number density of particles in a small volume element centred at
the point (r, v) at time t .

Provided no particles are created or destroyed, f obeys a continuity equation
in (r, v) space which is derived by exactly the same arguments used to derive
the continuity equation for the mass density ρ(r, t) in Chapter 3. There are now
two divergence terms arising from the flow of particles through the surfaces of the
volume element in both r and v space. Thus, we have

∂ f

∂t
+ ∂

∂r
· ( f v)+ ∂

∂v
· ( f a) = 0 (7.3)

where a is the acceleration of the particles in the volume element. Since r and v
are independent variables in (7.3) we may bring v outside the differential operator
and, if in addition ∇v · a = 0, we get

∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v
= 0 (7.4)

in which we have replaced a by F/m where F is the force acting on the particles of
mass m at the point (r, v) at time t . Such a partial differential equation describing
the evolution of the distribution function is known as a kinetic equation.

As a matter of fact, (7.4) is necessarily a collisionless kinetic equation since we
certainly cannot assume ∇v ·a = 0 if we want to include the collisional interactions
taking place inside the volume element. A proper description of collisions is a
formidable problem as we shall see in Chapter 12. However, the transition from
(7.4) to a collisional kinetic equation can be made by a simple heuristic argument.
Assuming that F represents all the non-collisional (macroscopic) forces we note
that (7.4) states that

d f (r, v, t)

dt
= ∂ f

∂t
+ dr

dt
· ∂ f

∂r
+ dv

dt
· ∂ f

∂v

= ∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v
= 0

i.e. in the absence of collisions f is constant along any trajectory in (r, v) space.
Collisions, however, change this so we write

∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v
=
(
∂ f

∂t

)
c

(7.5)



254 Collisionless kinetic theory

where (∂ f/∂t)c represents the change in f with time due to collisions. This is then
the collisional kinetic equation, though how we represent the collision term in (7.5)
is a problem we defer until the next chapter.

In this chapter we are concerned only with collisionless kinetic theory for the
very good reason that most plasmas are essentially collisionless. All of the terms
in (7.5) have the dimensions of f times a frequency. The frequency appropriate
to the right-hand side is, of course, the collision frequency νc while that on the
left-hand side depends on the dominant macroscopic force. Since this macroscopic
force is typically the Lorentz force due to the self-consistent fields the appropriate
frequency is likely to be one of the wave frequencies encountered in the previ-
ous chapter. In particular, we have noted the dominance of the electrostatic field
in maintaining charge neutrality and causing oscillations at the electron plasma
frequency in response to any local charge inequality. As the plasma frequency is
usually much greater than the collision frequency, unless we are specifically inter-
ested in collisional effects, we can ignore the collision term and take (7.4) as the
kinetic equation. We shall study it in order to discover some important properties
of plasmas which depend on distributions of the plasma particles in velocity space
and which, therefore, are not accessible to fluid descriptions.

7.2 Vlasov equation

Vlasov first solved the collisionless kinetic equation (7.4), now known universally
as the Vlasov equation, in the case where F = eE(r, t) and E is the self-consistent
electric field. Interestingly he did not solve (7.4) as an initial value problem and
consequently missed its most important property! This was subsequently discov-
ered by Landau and is discussed in the next section. The collisionless kinetic
equation is sometimes referred to as the collisionless Boltzmann equation but this
is something of a contradiction in terms since the representation of collisions is at
the very heart of the Boltzmann equation.

The first thing we shall do with the Vlasov equation is to show its formal equiv-
alence to the equation describing individual particle orbits. The latter is

mr̈ = F (7.6)

having the solution

r = r(c1, c2, . . . , c6, t)
v = v(c1, c2, . . . , c6, t)

}
(7.7)

where c1, c2, . . . , c6 are the six constants of integration, which might for example
be the initial values of r and v. Inverting (7.7) gives the formal solution

ci = ci (r, v, t) (i = 1, 2, . . . , 6) (7.8)
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Now any arbitrary function of the ci

f = f (c1, c2, . . . , c6)

is a solution of (7.4) as one can see by direct substitution:

6∑
i=1

∂ f

∂ci

(
∂ci

∂t
+ v · ∂ci

∂r
+ F

m
· ∂ci

∂v

)
=

6∑
i=1

∂ f

∂ci

dci

dt
= 0

since the ci are constants of the motion. Thus the general solution of the Vlasov
equation is an arbitrary function of the integrals of (7.6), the equation describing
orbit theory. This was demonstrated by Jeans in work on stellar dynamics and so is
generally known as the Jeans theorem.

The formal equivalence of the Vlasov equation and particle orbit theory is rig-
orous and simple but, in one sense, slightly deceptive. It should not be imagined
that solving the Vlasov equation is as easy as finding some of the orbit solutions
obtained in Chapter 2. The reason is that, in the Vlasov equation, F contains both
external fields and self-consistent fields arising from the plasma motion. In Chap-
ter 2 we assumed that the latter were negligible compared with any applied fields
and so the orbit equations solved there are only approximations to the equation of
motion (7.6). We shall see later that there is a direct relationship between solving
the linearized Vlasov equation and calculating the simple (unperturbed) orbits of
the particles in the external fields. We note, in this context, that Jeans’ theorem pro-
vides a method of obtaining zero-order, equilibrium distribution functions, namely,
any function of the constants of the motion in the (zero-order) external fields.
Illustrations of this appear in later sections of this chapter.

For the moment, we observe that the full set of equations to be solved, in the
general case, is the Vlasov equation (7.4) for the distribution function of each
species of particle together with the Maxwell equations:

∇ × E = −∂B
∂t

(7.9)

∇ × B = ε0µ0
∂E
∂t

+ µ0j (7.10)

∇ · E = q/ε0 (7.11)

∇ · B = 0 (7.12)

where

q =
∑
α

eα

∫
fα dv (7.13)

j =
∑
α

eα

∫
v fα dv (7.14)



256 Collisionless kinetic theory

and the sums are over the particle species. The fact that there are at least two
Vlasov equations to be solved (one each for ions and electrons) is a relatively minor
complication compared with the problem of solving the full Vlasov–Maxwell set
of equations self-consistently for f , when f itself is a source of the fields through
(7.13) and (7.14). (The equivalent of this latter problem in orbit theory would
be finding the orbits in the full self-consistent fields.) Nevertheless, the Vlasov–
Maxwell equations are the starting point for most calculations in plasma kinetic
theory. They include the principal effect of particle interactions, the self-consistent
field, and in the approximation that there are a large number of particles within the
Debye sphere (nλ3

D 
 1), known as the weak coupling approximation (see Exer-
cise 7.3), they provide an adequate description unless we are specifically interested
in collisional effects. Their complexity means that one generally has to resort to
numerical methods even when a linear solution is sought. In the following sections
we present some important solutions of the linearized set of equations which are
amenable to analytic methods.

7.3 Landau damping

The most important and fundamental property of the Vlasov equation was dis-
covered by Landau (1946) who solved the linearized electron Vlasov equation for
F = −eE where E is the electric field created when a homogeneous plasma in
equilibrium is slightly perturbed. It is assumed that the perturbation is in the elec-
tron distribution only, so that the ions remain as a steady, homogeneous, neutral-
izing backgound. This simplifying assumption avoids having to solve two Vlasov
equations. Following Landau, we solve the linearized equation as an initial value
problem, i.e. the perturbation is introduced at t = 0. The alternative in which a
perturbation is introduced at r = 0 and its spatial evolution examined is considered
in Section 7.5.

Any steady, homogeneous distribution function f0(v) satisfies (7.4) identically,
since the electron density is uniform and equal to the ion density and there is no
electric field. If a small perturbation f1(r, v, t) is introduced, we may write

f (r, v, t) = f0(v)+ f1(r, v, t) (7.15)

and, since the contribution of f0 to E is zero, |E| is of order f1 and the linearized
Vlasov equation is

∂ f1

∂t
+ v · ∂ f1

∂r
− eE

m
· ∂ f0

∂v
= 0 (7.16)

where, from (7.11) and (7.13),

∇ · E = − e

ε0

∫
f1 dv (7.17)
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Solving (7.16) by means of Fourier and Laplace transforms, we write

f1(r, v, t) = 1

(2π)3/2

∫
f1(k, v, t) exp(ik · r)dk (7.18)

E(r, t) = 1

(2π)3/2

∫
E(k, t) exp(ik · r)dk (7.19)

so that (7.16) gives for each Fourier component

∂ f1(k, v, t)

∂t
+ ik · v f1(k, v, t)− eE(k, t)

m
· ∂ f0(v)

∂v
= 0 (7.20)

Before taking the Laplace transform, (7.20) may be simplified by noting that, since
E is electrostatic,

∇ × E(r, t) = 0

and hence

k × E(k, t) = 0

Thus E(k, t) is parallel to k so that, if u is the component of v along k, (7.20)
becomes

∂ f1(k, v, t)

∂t
+ iku f1(k, v, t)− eE(k, t)

m

∂ f0(v)
∂u

= 0 (7.21)

Taking the Laplace transform of (7.21), that is, multiplying by e−pt and integrating
over t from 0 to ∞, we get

(p + iku) f1(k, v, p)− eE(k, p)

m

∂ f0(v)
∂u

= f1(k, v, t = 0) (7.22)

where

f1(k, v, p) =
∫ ∞

0
f1(k, v, t)e−pt dt (7.23)

E(k, p) =
∫ ∞

0
E(k, t)e−pt dt (7.24)

From (7.22) f1 is obtained as a function of E which we can now substitute in the
Fourier–Laplace transform of (7.17)

ik E(k, p) = − e

ε0

∫
f1(k, v, p)dv

to obtain an equation for E alone. Substituting for f1 from (7.22)

ik E(k, p) = − e

ε0

∫
f1(k, v, t = 0)

p + iku
dv − e2

ε0m
E(k, p)

∫
∂ f0/∂u

p + iku
dv
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Hence

E(k, p) = ie

ε0k D(k, p)

∫
f1(k, v, t = 0)

p + iku
dv (7.25)

where

D(k, p) ≡ 1 − ie2

ε0mk

∫
∂ f0/∂u

p + iku
dv

is the plasma dielectric function; note that this is independent of initial conditions.
Carrying out the inverse Laplace and Fourier transforms formally solves the prob-
lem. Unfortunately, this is in general no simple matter. The time dependence of the
kth Fourier component of the electric field is given by

E(k, t) = 1

2π i

∫ σ+i∞

σ−i∞
E(k, p)ept dp (7.26)

where the integration is along a line parallel to the imaginary p-axis and to the
right of all singularities of the integral as indicated in Fig. 7.1(a).

It is a well-known result of complex variable theory that if E(k, p)ept is an an-
alytic function of p except for a finite number of poles in the infinite strip between
�p = −α and �p = σ then we may deform the contour of integration to that
shown in Fig. 7.1(b), i.e. we integrate along �p = −α instead of �p = σ but take
a horizontal detour to go around each of the poles lying between the two vertical
lines. The advantage of this deformation of the contour is that now, on its vertical
section, the integrand decays with time like e−αt and vanishes asymptotically. The
integrations along the horizontal lines are taken one in each direction and therefore
cancel out so that we are left with the integrations around the poles which give 2π i
times the sum of the residues at the poles.

For suitable choices of f0 and f1(t = 0) (the conditions that ∂ f0/∂u and f1(t =
0) are analytic functions of u are sufficient) the only singularities of E(k, p)ept

in the p-plane are simple poles where the dielectric function vanishes. Choosing
vx = u and defining F0 by n0 F0(u) = ∫

f0(v)dvy dvz , the zeros of D(k, p) are
given by

D(k, p) = 1 − iω2
pe

k

∫ +∞

−∞

dF0/du

p + iku
du = 0 (7.27)

where ωpe = (n0e2/ε0m)1/2 is the electron plasma frequency. Thus, if the solutions
of (7.27) are denoted by p j then from (7.26) we get, as t → ∞,

E(k, t) =
∑

j

R j e
p j t (7.28)
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Fig. 7.1. Deformation of contour of integration in complex p-plane.

where

R j = lim
p→p j

(p − p j )E(k, p)

is the residue of E(k, p) at p j . In general the poles p j are complex, so writing

p j (k) = −iω j (k)+ γ j (k) (7.29)
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where ω j and γ j are real, (7.28) becomes

E(k, t) =
∑

j

R j e
−iω j (k)t+γ j (k)t (7.30)

If any γ j > 0 the field grows exponentially and the linear approximation breaks
down, so we shall assume, for the moment, that all poles lie to the left of the
imaginary p-axis. Then all terms with γ j �= 0 in (7.30) are exponentially damped
oscillations. Note that none are damped as strongly as e−αt ; in general we are
interested in the pole closest to the imaginary p-axis since this corresponds to the
smallest damping decrement.

We now investigate the limit of long-wavelength waves, k → 0. To lowest order
in this limit (7.27) gives, on integration by parts and using

∫
F0 du = 1,

p = ±iωpe (7.31)

that is, undamped plasma oscillations. To find the lowest-order k dependence we
again integrate by parts and expand (p + iku)−2 in powers of (iku/p), giving

−ω2
pe

p2

∫ +∞

−∞
duF0(u)

(
1 − 2iku

p
− 3k2u2

p2
+ · · ·

)
= 1 (7.32)

The imaginary term vanishes if F0(u) is isotropic. This is true for all the imaginary
terms in the expansion in (7.32) since they are all odd in u. The first correction to
(7.31) arises from the term in k2. Choosing the Maxwell distribution

f0 = n0(m/2πkBTe)
3/2 exp(−mv2/2kBTe) (7.33)

it follows that

F0(u) = (m/2πkBTe)
1/2 exp(−mu2/2kBTe)

and from (7.32) we get

p = ±iωpe

[
1 + 3

2
(kλD)

2

]
(7.34)

It is easily verified (see Exercise 7.4) that (7.34) corresponds to the dispersion
relation (6.97) for longitudinal electron plasma waves (Langmuir waves) in a warm
plasma.

Since all the imaginary terms vanish in the expansion in powers of k, no damping
appears in such a solution. To find the damping decrement one must resort to
the full expression (7.27). This presents a problem since the integrand contains
a pole at u = i p/k which, for pure imaginary p, lies on the path of integration.
However E(k, p) was originally defined on a line in the p-plane to the right of all
singularities, that is, for �p > 0 (see Fig. 7.1). Thus, the integral in the u-plane
in (7.27) is also defined for �p > 0. This means that the pole at u = i p/k lies
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Fig. 7.2. Path of integration along �u-axis for pole (a) above axis and (b) on axis.

above the real axis, which is the path of integration in Fig. 7.2(a). In the limit
�p → 0 the pole drops on to the real axis but analytic continuation requires that
the path of integration must stay below the pole and so we integrate from −∞ up
to (i p/k) − ε, then around the semi-circle of radius ε below the pole, and finally
continue along the real axis from (i p/k)+ ε to +∞ as shown in Fig. 7.2(b). Thus
(7.27) is evaluated by means of the relationship

∫ +∞

−∞

dF0/du

(u − i p/k)
du = P

∫ +∞

−∞

dF0/du

(u − i p/k)
du + iπ

[
dF0

du

]
i p/k

(7.35)

where the second term on the right-hand side is simply iπ times the residue of the
integrand at the pole. (Had the pole approached the real axis from below and the
contour been deformed above it, the semi-circle would then have been described
in the negative (clockwise) direction and the sign of this term would be reversed.)
The principal part in (7.35) may be approximated by a power series as in (7.32).
Thus, (7.27) becomes

p2 = (−iω + γ )2 = −ω2
pe

(
1 − 3k2kBTe

p2m
+ iπp2

k2

[
dF0

du

]
i p/k

)
(7.36)

the imaginary part of which gives for the Landau damping decrement

γ = πω3
pe

2k2

[
dF0

du

]
i p/k

= −
(π

8

)1/2 ωpe

(kλD)3
exp

[
− 1

2(kλD)2
− 3

2

]
(kλD � 1)

(7.37)
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This result confirms what was said earlier concerning the vanishing of all imaginary
terms in a power series expansion in small k; as k → 0, γ → 0 faster than any
power of k. Numerical solution of (7.27) shows that as kλD → 1, |γ | → ωpe, that
is, the damping time approaches the period of the oscillations. Thus, the Debye
shielding distance λD is the minimum wavelength at which longitudinal oscillations
(k ‖ E) can occur. This is easily understood when one notes that at kλD = 1 the
phase speed of the wave, ω/k, is equal to the mean thermal speed of the electrons.
They are easily able to neutralize the space charge, therefore, and so prevent the
wave from propagating.

A further observation to be made from (7.37) is the following. The damping
decrement arose from the residue at the pole in (7.27). The sign of γ therefore de-
pends critically on the slope of F0(u) at the pole, as is obvious from the first equal-
ity in (7.37). Since we considered a Maxwellian, centred at the origin, the slope
was necessarily negative leading to damping. Clearly, the phenomenon of Landau
damping has its physical origin in the interaction of those ‘resonant’ electrons with
u ≈ ω/k. On reflection this is not surprising. Since u is that component of electron
velocity in the direction of propagation of the wave, those electrons with u ≈ ω/k
stay roughly in phase with the wave and, therefore, more effectively exchange en-
ergy with it. The actual energy exchange between any particular resonant electron
and the wave depends on the phase of the wave at the position of the electron.
But if a particle with u < ω/k is accelerated then its interaction with the wave is
made more resonant and therefore stronger than if it had been decelerated. Thus,
for particles moving slightly slower than the wave, acceleration is a stronger effect
than deceleration so that, on average, slower particles gain energy from the wave.
Clearly the opposite is true for particles travelling slightly faster than the wave.
Figure 7.3 illustrates the cases of the strongly resonant electrons. A negative slope
to the distribution function at the resonant speed (dF0(u = ω/k)/du < 0) means
that slower particles outnumber faster ones so that the wave loses more energy than
it gains and is therefore damped. It is clear from this argument that kinetic theory
is necessary for a description of Landau damping. Integration (or averaging) over
velocity space which gives rise to a fluid theory removes the physical mechanism,
the microstructure of F0(u), essential for Landau damping. Dawson (1962) de-
veloped the idea of energy exchange between particles and Langmuir waves into a
model from which he was able to retrieve Landau’s result. Nonetheless, misgivings
persisted for a long time as to whether collisionless damping was a real effect.

Had we chosen a distribution function with a range of values of u for which
dF0/du > 0, then for waves with phase velocities in that range we should have
found γ > 0 indicating Landau growth rather than damping. Any such unstable
waves are also lost in macroscopic theory and are, therefore, known as micro-
instabilities, some of which we discuss in Section 7.4.
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Fig. 7.3. Illustration of interaction of strongly resonant electrons with wave. Filled circles
represent electrons with speed u < ω/k which take energy from the wave. Open circles
represent electrons with speed u > ω/k which give energy to the wave.

7.3.1 Experimental verification of Landau damping

Any lingering doubts about the reality of Landau damping were dispelled by defini-
tive experiments by Malmberg and Wharton (1964, 1966) who showed that the
measured spatial attenuation of Langmuir waves agreed remarkably well with Lan-
dau’s result. The appropriate formulation of the Landau problem for comparison
with the measured damping is one in which ω is taken to be real and the dispersion
relation is solved for complex k. In this case we have

�k

�k
∝ exp

(
− 1

2k2λ2
D

)

In these experiments the plasma was, to a good approximation, collisionless (see
Exercise 7.5). Two probes were used, one of which, the transmitter, was set at a
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Fig. 7.4. Comparison of experimental results (circles) with theoretical dispersion curve for
electron plasma waves. The solid line corresponds to a calculation using the measured tem-
perature while the dashed line is for a cold plasma (after Malmberg and Wharton (1966)).

series of fixed frequencies while the receiving probe, at each setting, was moved
longitudinally. From the data, the real and imaginary parts of the wavenumber
were obtained as functions of frequency. A dispersion plot is shown in Fig. 7.4. In
comparing this result with the theoretical dispersion relation, k = k(ω), Malmberg
and Wharton chose a value of electron density which normalized the theoretical
curve to the experimental data at low frequencies; in this region (high phase veloc-
ities) temperature corrections to the dispersion relation should be negligible. The
measured dispersion plot in Fig. 7.4 shows excellent agreement with theory. Note
however that the theoretical curve is not simply a plot of (7.34); we recall that
(7.34) shows just the leading terms in an asymptotic series. For the conditions in
this experiment, the series is only weakly convergent so that additional terms have
to be retained. Note too that as k → 0, ω → 0 rather than ωpe; this departure from
the dispersion relation arises on account of the finite length of the plasma which
cuts off long wavelengths.

Figure 7.5 shows the measured damping compared with that predicted by theory.
The ordinate is �k/�k and the abscissa (ω/kVe)

2 ≡ (vp/Ve)
2 where Ve is the

electron thermal velocity. The ratio �k/�k and the phase velocity ω/k are found
directly from experiment. Since the electron velocity distribution was shown to
be Maxwellian, Te was known experimentally. It is clear that in a collisionless
plasma, electron plasma waves suffer exponential damping. The observed damp-
ing lengths range from 0.02 to 0.5 m, very much shorter than the electron mean
free path. The magnitude of this damping, together with its dependence on phase
velocity and on electron temperature, confirms the behaviour predicted for Landau
damping.
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Fig. 7.5. Comparison of experimental results with theoretically predicted Landau damping
of electron plasma waves (after Malmberg and Wharton (1966)).

7.3.2 Landau damping of ion acoustic waves

Landau damping is not restricted to Langmuir waves nor is it solely an electron
phenomenon. Any wave with phase velocity close to either of the particle thermal
velocities will suffer Landau damping. Ion acoustic waves with phase velocity cs

lying between Vi and Ve provide a particularly interesting example.
In general, Vi � Ve so F0i(u) is a squeezed version of F0e(u) and, for Ti � Te,

Fig. 7.6(a) shows that there is weak Landau damping of the waves due to both ions
and electrons. The damping is weak on the part of the ions because cs 
 Vi and
so there are very few ions in resonance with the wave. On the other hand, electron
Landau damping is weak because cs � Ve and so dF0e/du ≈ 0 at u = cs. For the
case that Ti ≈ Te, cs ∼ Vi as shown in Fig. 7.6(b). Now, although electron Landau
damping is still weak, ion damping is strong. In fact a numerical solution of the
kinetic dispersion relation (see Fig. 7.7(a)) shows that |γ | ∼ ωr .

To examine the dispersion and damping characteristics of ion acoustic waves in
detail we need a Vlasov equation for each species. The counterpart to the dispersion
relation (7.27) now has an ion contribution so that

D(k, ω) = 1 − ω2
pe

k2

∫ ∞

−∞

F ′
0e(u)

u − ω/k
du − ω2

pi

k2

∫ ∞

−∞

F ′
0i(u)

u − ω/k
du = 0 (7.38)

It is often convenient to write the dispersion relation for electrostatic waves in terms
of the plasma dispersion function Z(ζ ), defined by

Z(ζ ) = 1√
π

∫ ∞

−∞

e−ξ2

ξ − ζ
dξ � ζ > 0 (7.39)
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Fig. 7.6. Landau damping of ion acoustic waves for (a) Ti � Te and (b) Ti ∼ Te.

This function satisfies the differential equation

Z ′(ζ ) = −2 [1 + ζ Z(ζ )] (7.40)
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and has an asymptotic series representation

Z(ζ ) = −1

ζ

(
1 + 1

2ζ 2
+ 3

4ζ 4
+ · · ·

)
+ is

√
πe−ζ 2

(7.41)

with

s =



0 � ζ > 0
1 � ζ = 0
2 � ζ < 0

and a power series representation

Z(ζ ) = is
√
πe−ζ 2 − 2ζ

(
1 − 2

3
ζ 2 + 4

15
ζ 4 − · · ·

)
(7.42)

The dispersion relation may be represented in terms of the plasma dispersion func-
tion as

2k2λ2
D = Z ′(ω/

√
2kVe)+

(
ZaTe

Ti

)
Z ′(ω/

√
2kVi) (7.43)

where Za is the ion atomic number. Assuming Vi � ω/k � Ve it follows that
ζe ≡ (ω/

√
2 kVe) � 1 while ζi ≡ (ω/

√
2 kVi) 
 1, which allows us to use

the power series representation (7.42) for Z(ω/
√

2kVe) and the asymptotic series
representation (7.41) for Z(ω/

√
2kVi) to write an approximate dispersion relation

2k2λ2
D + [2 + 2i

√
πζe] − Za

Te

Ti

[
1

ζ 2
i

+ 3

2ζ 4
i

− 2i
√
πζie

−ζ 2
i

]
= 0 (7.44)

The real part of (7.44) reproduces the fluid dispersion relation (6.98), i.e.

ω2
r

k2
= ZakBTe/m i

(1 + k2λ2
D)

+ 3kBTi

m i
(7.45)

The imaginary part of (7.44) determines the Landau damping of the ion acoustic
mode which is approximately

γ

ωpi
	 −

(
π

8

)1/2
ωr

ωpi

1

(1 + k2λ2
D)

3/2

[(
me

m i

)1/2

+
(

Te

Ti

)3/2

exp

(
− Te/2Ti

1 + k2λ2
D

− 3

2

)]
(7.46)

The terms in square brackets denote electron and ion Landau damping, respec-
tively. Expressed in this form we see that for Te/Ti 
 1, ion Landau damping
can be neglected compared with the electron contribution. However, in practice
this condition is rarely satisfied sufficiently strongly so that both contributions
are needed. Moreover, though (7.46) is useful in that it shows the parametric
dependence of both electron and ion contributions, to get an accurate picture of the
damping it is necessary to solve complex dispersion relations numerically. Results
of a numerical solution of (7.43) are shown in Fig. 7.7.
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Fig. 7.7. The real part of the frequency and the damping rate (dots) for an ion acoustic wave
as functions of wavenumber for a hydrogen plasma with (a) Te/Ti = 1, (b) Te/Ti = 10.
Dashed lines indicate that the wave is heavily Landau damped.

7.4 Micro-instabilities

Fluid instabilities are macroscopic in the sense that their growth depends on cer-
tain fluid parameters and if growth occurs it involves all of the plasma within
some region in which the relevant parameters have the appropriate values. Micro-
instabilities, on the other hand, are driven by the interaction of a wave with only
a relatively small fraction of the particle population, namely those that are in
resonance with the wave. The instability is ‘localized’ in velocity (v) space rather
than in coordinate (r) space. Even within a fluid element not all of the particles are
directly involved in the instability and so there is no bulk motion of the plasma such
as one sees with fluid instabilities. Nevertheless, micro-instabilities can have sig-
nificant effects on the properties of a plasma. For example, the enhanced fluctuation
levels of naturally occurring, or externally excited, waves may alter the transport
properties of the plasma giving rise to anomalous or turbulent (wave–particle)
transport rather than classical (collisional) transport.

The simplest example of a micro-instability is the so-called ‘bump-on-tail’ in-
stability (BTI). Instead of the single-humped Maxwellian F0(u) that we considered
in the last section we suppose that a few of the electrons have been removed from
the main body of the plasma and re-inserted as a small flux of hot particles out in
the tail of the distribution as shown in Fig. 7.8. If we carry out the same analysis
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Fig. 7.8. Bump-on-tail distribution function.

that led to Landau damping we would expect that �p would still be given by (7.34)
since the small bump would have no significant effect on the integral in (7.32)
but, of course, �p = γ would change sign for waves with phase velocities lying
between u A and uB because dF0/du > 0 between these limits.

It might be thought that whenever the distribution function F0(u) has a range of
values of u for which dF0/du > 0 some waves will grow and the equilibrium will
be unstable. However, that would overlook the simplifying assumption made to
obtain the results (7.34) and (7.37), namely, that k → 0, in which case |γ | � |�p|.
In general, the equilibrium is unstable if there is a solution of (7.27) for which
�p > 0 (see Fig. 7.1). Now there is a powerful theorem in complex analysis which
provides a method of determining this. Taking k as real and positive and re-writing
(7.27) as

D(V ) = 1 − ω2
pe

k2

∫ +∞

−∞

F ′
0(u)du

u − V
= 0 (7.47)

where V = (ωr +iγ )/k, we wish to know whether there are any values of V which
satisfy this equation and for which γ /k > 0. The argument principle tells us that
if we draw any closed contour C in the complex V -plane and trace its image CD in
the complex D-plane then the number of zeros minus the number of poles of D(V )
inside C is equal to the number of times CD encircles the origin in the D-plane.
The contour C that we wish to investigate is shown in Fig. 7.9. As R → ∞ this
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Fig. 7.9. Semi-circular contour of integration in upper half-plane.

encompasses the whole of the upper half-plane, in which �V > 0, i.e. γ > 0. Now,
by its definition, D(V ) is analytic in the upper half-plane so it has no poles and the
argument principle simply tells us how many zeros of D(V ) there are.

The image contours CD in the D-plane are called Nyquist diagrams, examples
of which are shown in Fig. 7.10. Figure 7.10(a) shows schematically what the
CD contour might look like for the stable case of F0(u) given by the Maxwell
distribution. In the limit of R → ∞ the semi-circle, |V | → ∞, maps on to the
point D = 1 as we can easily see from (7.47). For the rest of the contour, i.e.
−∞ < �V < +∞, (7.35) may be used to evaluate the integral in (7.47) from
which we see that there is only one other point where �D = 0 and that is at V = 0
where dF0/du = 0. At this point the second term in (7.47) is positive and so D > 1.
Also, on the contour, �D has the same sign as �V so that the curve is traced in the
manner shown. This contour does not encircle the origin confirming that there are
no zeros of (7.47) in the upper half V -plane.

Figures 7.10(b),(c) show possible contours CD for a double-humped distribution
where there are now three values of V for which �D = 0. For the bump-on-tail
distribution (see Fig. 7.8) these are V = 0, u A, uB . Figure 7.10(b) corresponds to a
stable double-humped distribution because CD still does not encircle the origin. On
the other hand, in Fig. 7.10(c) the origin is encircled once so there is an unstable
root of the dispersion relation (7.47).

Penrose (1960) showed that there is a simple criterion which can be applied to
determine stability without the need to construct the Nyquist diagram. First we note
that, if there is to be an unstable root, CD must cross the �D-axis in the left-half
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Fig. 7.10. Nyquist diagrams for (a) stable Maxwellian, (b) stable and (c) unstable double-
humped distributions.

plane, that is D(u A) < 0. Using (7.35) and noting that dF0(u A)/du = 0†

D(u A) = 1 − ω2
pe

k2

∫ +∞

−∞

F ′
0(u)− F ′

0(u A)

u − u A
du < 0

On integration by parts this becomes

1 − ω2
pe

k2

∫ +∞

−∞

F0(u)− F0(u A)

(u − u A)2
du < 0 (7.48)

† Note that since both numerator and denominator vanish at u = u A we do not need to take the principal part
of the integral.
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Fig. 7.11. Beam–plasma distribution function.

But since k can vary from 0 to ∞ there will be some value of k for which (7.48) is
satisfied provided only that

∫ +∞

−∞

F0(u)− F0(u A)

(u − u A)2
du > 0 (7.49)

This is a necessary and sufficient condition for instability and is known as the
Penrose criterion. Near u = u A the integrand in (7.49) is approximately equal to
F ′′(u A), which is positive since F(u A) is a minimum. However, the existence of
a minimum is not, of itself, a sufficient condition for instability since all particles
interact with the wave, giving or taking energy depending upon their relative phase.
In effect, the Penrose criterion says that the minimum must be deep enough that
the net effect of the givers outweighs that of the takers.

If uB is sufficiently large then the hot electron beam becomes completely sepa-
rated in velocity space from the main distribution function and rather than a ‘bump-
on-tail’ instability we have a beam–plasma instability. In this case, illustrated in
Fig. 7.11, F0(u A) → 0 and so (7.49) is certainly satisfied (F0(u) > 0 for all u)
but since all the beam electrons now contribute to the instability, it is no longer
a resonant, micro-instability but a macroscopic instability. It ought, therefore, to
be describable by the fluid equations. The link between the two is explored in the
following section.
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7.4.1 Kinetic beam–plasma and bump-on-tail instabilities

In Section 6.5 we found the characteristics of the two-stream instability (TSI) and
the beam–plasma instability (BPI) from a cold fluid model. In both cases instability
was caused by a feedback that produced charge bunching, with one system reacting
back on the other. However, there are other cases in which only nearly resonant par-
ticles in the distribution are involved and which consequently cannot be described
by a fluid model, since one is not then able to identify separate systems. Resonant
instabilities have to be described using kinetic theory. Instabilities often exist in
both reactive and resonant forms. For example, the bump-on-tail instability (BTI)
is the kinetic counterpart of the reactive BPI. To explore the relation between the
two we look again at BPI characteristics, this time from a kinetic standpoint. With
the beam electrons described by the distribution function

f (v) = nb

(2π)3/2V 3
b

exp

[
−(v − vb)

2

2V 2
b

]

where nb, vb, Vb denote density, streaming and thermal velocities of the beam
particles, it is straightforward to recover (6.120) in the cold plasma limit. For
the reactive instability, γmax ∼ (nb/n0)

1/3ωp. The physical effect of a finite beam
electron temperature is to produce a spread of the beam electron velocities about
vb with consequent reduction of the BPI growth rate and ultimate suppression of
the instability. Thermal effects may be ignored provided |ω − k · vb| 
 √

2 kVb.
With k 	 ωp/vb this reduces to (

nb

n0

)1/3


 Vb

vb
(7.50)

For the BTI with vb 
 Vb we see by comparison with Fig. 7.8 that growth
occurs in the region over which the slope of the distribution function is positive,
when ω/k is within the range vb − Vb < ω/k < vb. The maximum growth rate is

|γmax| 	
( π

2e

)1/2 nb

n0

(
vb

Vb

)2

ωp (7.51)

in which e = exp(1). The bandwidth �ω across which growth is optimal is such
that �ω ∼ kVb and hence

�ω

ωp
	 Vb

vb
(7.52)

Thus the growth rate is less than the bandwidth for optimal BTI growth provided(
nb

n0

)1/3

≤ Vb

vb
(7.53)
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Fig. 7.12. Ion and electron distribution functions in a current-carrying plasma subject to
(a) ion acoustic instability and (b) Buneman instability.

The conditions (7.50), (7.53) serve to distinguish the reactive BPI from its kinetic
counterpart.

7.4.2 Ion acoustic instability in a current-carrying plasma

By allowing electrons to drift relative to ions so that the plasma is now current-
carrying, we introduce a source of free energy which will counter Landau damp-
ing and, if strong enough, may drive the mode unstable. Before analysing this
ion acoustic drift instability in terms of the dispersion relation, it is easy to see
qualitatively how instability arises from a picture of the distribution functions.
Representing the current by a net drift velocity vd between ions and electrons,
for the velocity component parallel to the current the distribution functions are
as shown in Fig. 7.12(a). Provided vd 
 Vi there is a range of phase veloci-
ties (Vi � cs < vd) for which ion Landau damping is negligible but Landau
growth takes place (dF0e/du > 0) due to interaction with the resonant elec-
trons.

Here again there is a smooth transition from the resonant micro-instability to
the macroscopic, Buneman instability. Either by increasing vd or decreasing Te

we can separate the ion and electron distributions in velocity space as shown in
Fig. 7.12(b), thus strengthening the instability and converting it from resonant to
reactive.

Returning to the dispersion relation (7.43) it is straightforward to modify it to
allow for electrons drifting relative to ions with a drift velocity vd. We prescribe an
ordering vd � Ve in addition to the requirement that Te/Ti 
 1 so that ion Landau
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Fig. 7.13. The real part of the frequency and the growth rate (dots) for the current-driven
ion acoustic instability as functions of the wavenumber for a hydrogen plasma with
Te/Ti = 10.

damping can be ignored. It follows that

γ

ωpi
	
(π

8

)1/2 (ωr

k

)3
(

m i

Te

)
1

ωpi

(kvd − ωr )

Ve
exp

[
−(ωr/k − vd)

2

2V 2
e

]
(7.54)

We see at once that electron drift reduces the electron Landau damping of the mode
and for vd > cs instability will develop. Instability threshold is determined by (see
Exercise 7.12)

vd 	 ωr

k

[
1 +

(
Te

Ti

)3/2 (m i

me

)1/2

exp

(
− Te

2Ti
− 3

2

)]

which is a sensitive function of the species temperature ratio. Again in practice it
is essential to solve the exact dispersion relation numerically (see Fig. 7.13).
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7.5 Amplifying waves

In the light of the Landau analysis developed in this chapter we return to the ques-
tion of amplifying waves and convective and absolute instabilities, first discussed
in Section 6.6. In our derivation of Landau damping (and of Landau growth when
a source of free energy is available from a suitable distribution of electrons or ions)
the dispersion characteristics were described in terms of their evolution in time,
i.e. for real values of k, solutions were found for ω ≡ ω(k) with ω complex.
The Landau analysis provided the response in time of the plasma to an initial
perturbation f1(x, v, t = 0). Equation (7.25) for the electric field E(k, ω) produced
by the perturbation has the form

E(k, ω) = g(k, ω)
D(k, ω)

(7.55)

where g(k, ω) is determined by the initial perturbation and D(k, ω), the plasma
dielectric function, is a characteristic of the unperturbed plasma. In Section 7.3
we supposed that the only singularities of E(k, ω) in the complex ω-plane were
poles where D(k, ω) = 0. These complex roots determine the time-asymptotic
behaviour of a perturbation with prescribed (real) k. We now want to turn to other
considerations.

In discussing weakly coupled waves in Chapter 6 we found that conditions under
which amplifying waves were present corresponded to conditions for convective
instability. To determine whether or not a plasma is convectively unstable one
has to examine the evolution of some initial perturbation in both time and space.
The consideration of spatially amplifying waves, on the other hand, is akin to the
Landau analysis of Section 7.3. Here we need to determine the spatial response to
an initial perturbation at some point in the plasma, namely f1(x = 0, v, t), rather
than the response in time. This means we now have to allow the wavenumber k
to be complex. We can see at once that this presents a contrast to the Landau case
since clearly the sign of �k cannot of itself provide a criterion for distinguishing
amplification on the one hand from attenuation on the other, since a change in the
direction of propagation results in k changing sign.

To determine whether amplification takes place in a plasma we examine the
spatial development of a perturbation at x = 0 oscillating in time,

g(x, t) =
{

0 t < 0
g0δ(x)e−iω0t t > 0

(7.56)

where g0 is a constant. The response of the plasma to this perturbation will be
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determined by the response function R(x, t) where

R(x, t) = g0

2π

∫ ∞+iσ

−∞+iσ

1

2π i

∫ ∞

−∞

ei(kx−ωt)

(ω − ω0)D(k, ω)
dk dω (7.57)

We wish to determine the asymptotic (|x | → ∞) behaviour of R(x, t) as (t → ∞).
A perturbation tending to zero as x → ±∞ is evanescent; one that increases in
either direction corresponds to amplification. To decide the asymptotic behaviour
we must first determine the asymptotic response in time before letting |x | → ∞
since R(|x | → ∞, t) → 0. To find the time-asymptotic behaviour we lower the
ω-contour. The plasma being at most only C-unstable, there is no singularity from
D(k, ω) in the upper half ω-plane so that the uppermost singularity in the integrand
in (7.57) is the pole on the real axis at ω = ω0. Thus

R(x, t → ∞) = g0

2π i

∫
C

ei(kx−ω0t)

D(k, ω0)
dk

In lowering the ω-contour the singularities of the response function will move in
the complex k-plane. Should one or other of these singularities cross the �k-axis
the contour has to be displaced to ensure that the deformed contour passes below
singularities originating in the upper half-plane and above any that have crossed the
�k-axis from below. Amplifying waves are described by the poles of the response
function that cross the �k-axis as �ω → 0. This gives

R(x, t → ∞) =
∑
k+

H(x)

(∂D/∂k)k+(ω0)

ei(k+(ω0)x−ω0t)

−
∑
k−

H(−x)

(∂D/∂k)k−(ω0)

ei(k−(ω0)x−ω0t) (7.58)

where H(x) is the Heaviside step function. From this it follows that waves with
�k+(ω0) < 0 are spatially growing for x > 0 and those with �k−(ω0) > 0 are
spatially growing for x < 0.

A more complete discussion of wave amplification may be found in Briggs
(1964).

7.6 The Bernstein modes

Although, in Section 7.2, we wrote down the full set of Vlasov–Maxwell equations,
so far we have discussed unmagnetized plasmas only. Consequently, our inves-
tigations have been restricted to solutions of the Vlasov–Poisson equations. In a
classic paper, Bernstein (1958) solved the Vlasov–Maxwell set of equations, by the
Landau procedure used in Section 7.3, but including an equilibrium magnetic field,
B0, and allowing for transverse as well as longitudinal waves. He also included the
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ion dynamics but this extension is, mathematically, fairly trivial compared with the
other two; physically it is not trivial in that it introduces further (low frequency)
waves. Bernstein’s general dispersion relation reproduced the various waves previ-
ously discovered using fluid equations but it also included ion and electron modes
propagating without growth or damping across the magnetic field lines (k ⊥ B0),
which have become known as the Bernstein modes.

It is the inclusion of the equilibrium field B0 which particularly complicates the
calculation but we can omit the ion motion and exclude transverse waves without
losing the electron Bernstein modes so, for clarity, we shall adopt both of these
simplifications. Furthermore, instead of using a Laplace transform it is now more
common to use a Fourier transform in time as well as in space so that all perturba-
tions vary as exp i(k · r − ωt); see Section 7.5. Assuming that the imaginary part
of ω is positive so that all perturbations vanish as t → −∞, it can be shown that
analytic continuation of the dispersion relation into the lower half ω-plane is then
equivalent to the Landau procedure. Physically, this can be thought of as switching
on the perturbation at an infinitesimally slow rate.

The linearized Vlasov equation is now

∂ f1

∂t
+ v · ∂ f1

∂r
− e

m
(v × B0) · ∂ f1

∂v
= e

m
E · ∂ f0

∂v
(7.59)

where

f (r, v, t) = f0 + f1(r, v, t)

and we shall assume the equilibrium distribution function f0 to be the Maxwellian
(7.33). In (7.59) the equilibrium electric field E0 is taken to be zero as before and
the magnetic field perturbation B1 is ignored since only longitudinal waves are to
be examined. Equation (7.59) is then solved by the method of characteristics or, in
plasma terms, by integration over unperturbed orbits. The essence of the method is
that

d f1(r, v, t)

dt
= ∂ f1

∂t
+ v · ∂ f1

∂r
+ dv

dt
· ∂ f1

∂v

and if we use
dv
dt

= − e

m
(v × B0) (7.60)

which is the equation of motion of the electron in the equilibrium (or unperturbed)
field, then we may write (7.59) as

d f1(r, v, t)

dt
= e

m
E · ∂ f0

∂v
= g(r, v, t) (7.61)

say. In (7.61) r = r(t) and v = v(t) are the solutions of (7.60) given by (see
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Section 2.2)

v(t) = {v⊥ cos[�e(t − t0)+ θ ], v⊥ sin[�e(t − t0)+ θ ], v‖}
r(t)− r(t0) = {(v⊥/�e)(sin[�e(t − t0)+ θ ] − sin θ),

− (v⊥/�e)(cos[�e(t − t0)+ θ ] − cos θ), v‖(t − t0)}




(7.62)
Hence, the solution of (7.61) is

f1(r(t), v(t), t) =
∫ t

−∞
g(r(t ′), v(t ′), t ′)dt ′

= e

m

∫ t

−∞
E(r(t ′), t ′) · ∂ f0(v

2(t ′))
∂v(t ′)

dt ′

= e

kBT

∫ t

−∞

∂φ(r(t ′), t ′)
∂r(t ′)

· v(t ′) f0(v
2(t ′))dt ′

= e f0(v
2(t))

kBT

∫ t

−∞

[
dφ(r(t ′), t ′)

dt ′ − ∂φ(r(t ′), t ′)
∂t ′

]
dt ′

where E has been replaced by −∇φ and in the last step we have used, from (7.62),

v2(t) = v2
⊥ + v2

‖ = v2(t ′)

and

dφ(r, t)

dt
= ∂φ

∂t
+ v(t) · ∂φ

∂r

Now, from Poisson’s equation

∇2φ = e

ε0

∫
dv f1(r, v, t)

= n0e2φ(r, t)

ε0kBT
− e2

ε0kBT

∫
dv f0(v

2)

∫ t

−∞

∂φ(r(t ′), t ′)
∂t ′ dt ′

and with φ(r, t) ∝ exp(i(k · r − ωt)) this yields the dispersion relation

−k2 = 1

λ2
D

[
1 + iω

(
m

2πkBT

)3/2

∫
dv e−mv2/2kBT

∫ t

−∞
dt ′ exp{i[k · (r(t ′)− r(t))− ω(t ′ − t)]}

]
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Since we want to consider waves propagating perpendicular to B0 it is conve-
nient to choose k = (k, 0, 0) and the dispersion relation then reduces to

1 + k2λ2
D + iω

(
m

2πkBT

)
∫ ∞

0
v⊥ dv⊥e−mv2

⊥/2kBT
∫ 2π

0
dθ
∫ ∞

0
dτe−[ikv⊥/�e][sin(�eτ+θ)−sin θ ]+iωτ = 0

The next step is to use the relationship

eix sin y =
∞∑

n=−∞
Jn(x)e

iny

where the Jn are the Bessel functions of the first kind. Then after the θ and τ

integrations the result is

1 + k2λ2
D − ωm

kBT

∫ ∞

0
v⊥ dv⊥e−mv2

⊥/2kBT
∞∑

n=−∞

J 2
n (kv⊥/�e)

ω − n�e
= 0 (7.63)

Finally, using another Bessel function relationship∫ ∞

0
e−γ x2

Jn(αx)Jn(βx)x dx = 1

2γ
e−(α2+β2)/4γ In

(
αβ

2γ

)

where In is the modified Bessel function, this becomes

1 + k2λ2
D = ωe−λ

∞∑
n=−∞

In(λ)

ω − n�e
(7.64)

where λ = (k2kBT )/m�2
e. Making use of a Bessel function sum rule

∞∑
n=−∞

In(λ)e
−λ = 1

allows (7.64) to be written as

1 − 2�2
ee−λ

k2λ2
D

∞∑
n=1

n2 In(λ)

(ω2 − n2�2
e)

= 0 (7.65)

The dispersion relation (7.65) was found by Bernstein who showed that it has real
solutions so that the waves neither grow nor damp. By appealing to the small and
large λ approximations for In(λ), namely

In(λ) 	 (λ/2)n/n! λ → 0

In(λ) 	 eλ/
√

2πλ λ → ∞
we can see at once that resonances (k → 0) occur at harmonic frequencies with the
exception of the n = 1 term for which the cut-off is at the upper hybrid frequency
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Fig. 7.14. Dispersion curves for electron Bernstein modes.

ωUH = (ω2
pe + �2

e)
1/2, corresponding to the cold plasma result in Section 6.3.3.

Numerical solution of the full dispersion relation (7.65) for 2|�e| < ωUH < 3|�e|
produces the dispersion curves in Fig. 7.14. Finite Larmor radius effects included
in the kinetic theory model lead to complex dispersion characteristics. In particular
the nature of the dispersion curves changes on passing through the upper hybrid fre-
quency. For λ 
 1 the dispersion curves approach the various harmonic frequen-
cies from above. For n2 < ω2

UH/�
2
e, the dispersion curves start from ω2 = n2�2

e at
λ = 0 and tend to ω2 = (n − 1)2�2

e as λ → ∞, whereas for n2 > ω2
UH/�

2
e, the

characteristic through ω2 = n2�2
e at λ = 0 first increases with λ, passing through

some maximum, before again tending to ω2 = n2�2
e as λ → ∞.

The reason Bernstein modes (ω ≈ n�e) are not found by fluid theory is that the
propagation of these waves depends on the cyclotron motion of the electrons about
the field lines. Fluid theory, which averages over the Larmor orbits, therefore loses
these modes. The Larmor orbits also hold the key to understanding why Bernstein
modes are not Landau damped. Since all particles must travel in circular orbits
about the field lines, they are unable to stay in phase with the wave propagating
across the field lines. On the other hand, lifting the restriction of perpendicular
propagation, allowing a component, k‖, of the propagation vector, k, parallel to
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Fig. 7.15. Dispersion curves for electron Bernstein modes compared with measured char-
acteristics (after Armstrong et al. (1981)); ωpe/2π = 93.7 MHz, �e/2π = 23.7 MHz,
ωUH/2π = 96.7 MHz.

the magnetic field, permits Landau damping. This is because particle motion along
the field lines is unrestricted so that resonant interaction in this direction can take
place. Thus, propagation of Bernstein modes is confined within a fan about the
perpendicular direction. A rough measure of the half-angle of this fan is given
by the condition that, for negligible Landau damping, the phase speed along the
field lines (where the damping takes place) must be much greater than the electron
thermal speed,

ω

k‖


√

kBT

m

or, if θ is the angle between k and B0,

cos θ � ω

k

(
m

kBT

)1/2

≈ n�e

k

(
m

kBT

)1/2

= n

λ1/2
= n

krL

where n is the harmonic number and rL is the electron Larmor radius.
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Electron Bernstein waves have been characterized across a range of plasmas in
the laboratory. Figure 7.15 shows one example of the measured dispersion char-
acteristics for propagation orthogonal to the magnetic field compared with theory
(Armstrong et al. (1981)) over a limited range of wavenumber.

7.7 Inhomogeneous plasma

The calculation in the last section demonstrates once again the close relationship
between particle orbit theory and collisionless kinetic theory. The characteristics
of the partial differential equation we solved were the electron orbits in the equilib-
rium fields. In fact, since we assumed no electric field and a constant magnetic field,
these were the simplest orbits with each electron free to move along the field lines
but restricted to circular motion about the field lines in the plane perpendicular to
B0. Knowing that magnetic fields, especially in confined plasmas, are almost never
uniform and that inhomogeneity introduces grad B drifts in opposite directions
for ions and electrons we may wonder what might be the consequences of such
practical considerations. This opens a huge field of investigations, including a
whole ‘zoo’ of drift instabilities (see Gary (1993)), which we have not space to
discuss. Instead, we note a few general principles and illustrate the use of Jeans’
theorem in defining equilibrium distribution functions.

The first point to note is that the equilibrium current density given by j = ∇×B
is not due to the electron grad B drift (it is in the wrong direction) and so must be
established by some compensating plasma inhomogeneity. This was illustrated in
Section 2.5 for the case where the equilibrium is maintained by oppositely directed
plasma and magnetic pressures

∇(P + B2/2µ0) = 0

A second general point is that the equilibrium distribution function cannot be
a simple Maxwellian but must contain either a density or temperature gradient
or, indeed, both. Suppose for simplicity that all variations are in the x direction
only; then we need an f0 which is x dependent. We therefore construct f0 using a
constant of the motion which includes x . It is easily verified that the constants of
the motion for electron orbits in the equilibrium fields, E0 = 0, B0 = (0, 0, B(x))
are

W⊥ = m(v2
x + v2

y)/2

pz = mvz

px = m

[
vx + e

m

∫
B(x) dy

]
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py = m

[
vy − e

m

∫
B(x) dx

]

Now we have discussed orbit theory only under the assumption that gradient length
scales are small compared with the Larmor radius so we may treat B(x) as constant
in the integral in py and obtain x −vy/� as an approximate constant of the motion.
Thus, for the case of a density gradient

n(x) = n0(1 + εnx) (7.66)

but no temperature gradient, a suitable choice of equilibrium distribution function
is

f0 = n0

(
m

2πkBT

)3/2

[1 + εn(x − vy/�)]e
−mv2/2kBT

On taking the velocity moment of this equation we find a macroscopic drift velocity

vn =
∫
vy f0 dv = −εnkBT/m� = −εnV 2

e /�

From the pressure-balance equation we get

vn + 2v̄B/β = 0 (7.67)

where v̄B = εBkBT/m� is some sort of average grad B drift velocity in the field

B(x) = B0(1 + εBx)

and β is the ratio of plasma and magnetic pressures. Note that v̄B is not the grad B
drift velocity which appeared in the particle orbits in Section 2.4.1. That is given
by vB = εBv

2
⊥/2� and is different for each particle. We shall return to this point

shortly.
Extending the argument to include a temperature gradient given by

T (x) = T0(1 + εTx) (7.68)

as well as the density gradient we take

f0 = n0

(
m

2πkBT0

)3/2

{1 + (x − vy/�)[εn + εT(mv
2/2kBT0 − 3/2)]}e−mv2/2kBT0

(7.69)
Here the energy moment gives (7.68) and the velocity moment (see Exercise 7.10)∫

vy f0 dv = vn + vT
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where vT = −εTkBT0/m� so that (7.67) becomes

vn + vT + 2v̄B/β = 0 (7.70)

Now let us examine the roles of these macroscopic drift velocities and compare
them with the microscopic vB which is velocity dependent and actually appears
in the orbit equations. Since the magnetic field gradient determines the current by
Ampère’s law, it follows that the main role of v̄B is to determine the net drift ve-
locity between the ions and electrons. For simplicity let us treat the ions as a static
neutralizing background so that the current is carried entirely by the electrons. Then
Ampère’s law gives the drift velocity vd as

vd = −2v̄B/β = vn + vT

This can give rise to drift wave instabilities as we saw earlier when discussing ion
acoustic waves.

Whilst the sum of vn and vT is fixed by vd it turns out that vT is in general
more destabilizing than vn because, for a given vd, it produces a more distorted f0.
Within the approximation of weak gradients it is easily seen that a density gradient
moves the peak of f0(vy) only slightly away from vy = 0. On the other hand, the
v3

y dependence of the εT term in (7.69) shifts the peak much further from vy = 0 as
illustrated in Fig. 7.16.

An interesting example occurs in the physics of shock waves. In laminar, perpen-
dicular shocks, for which the magnetic field is at right angles to the shock normal,
all three gradients are in the same direction, along the normal, and the equilibrium
is maintained by an electric field opposing the combined magnetic and plasma
pressure. The macroscopic drifts now include the E × B drift, vE = E0/B0, and
obey the equation

vd = vE − (vn + vT) = 2v̄B/β

Priest and Sanderson (1972) showed that in this case the density gradient has no
significant effect, merely increasing vE to maintain vd which is determined by the
magnetic field gradient through v̄B. However, the distortion of f0 introduced by
a temperature gradient moves the peak of f0 from vd to vd + 3vT/2, as shown
in Fig. 7.17, and can produce a very significant increase in instability. Allan and
Sanderson (1974) showed that this effect can drive the ion acoustic instability even
in the case of zero net drift velocity (vd = 0) and Ti ∼ Te. Note that although
vE is a microscopic drift, since it appears in the orbits, as well as a macroscopic
drift, because it is the same for all electrons, it is the net drift vd which matters.
The equilibrium equation must be obeyed and in the absence of a pressure gradient
vE = vd. Introduction of density and temperature gradients then increase vE but in
such a way as to maintain the same net drift velocity.
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Fig. 7.16. Schematic representation of temperature gradient distortion. Electrons on the
left-hand sides (x < x0) of the upper figures fill the right-hand sides (vy > 0) of the lower
figures and vice versa. The peak in (b) moves to the right to preserve particle number (after
Priest and Sanderson (1972)).

Finally, let us consider the effect of the other microscopic drift velocity vB =
εBv

2
⊥/2�. This complicates calculations because it appears in the orbits and, unlike

vE, is not the same for all electrons. For low β plasmas it is smaller than the other
drift velocities and, on these grounds, is usually ignored. Even for low β plasmas,
however, it can have a significant effect on resonant wave phenomena because the
v2

⊥ dependence spreads the resonance over a range of velocities. In the case of
the Bernstein modes, for example, the resonant denominator ω − n�e in (7.63)
is replaced by ω − n�e − kvB(v

2
⊥) and the integration over velocity no longer

produces the sharp resonances at the cyclotron harmonics seen in (7.64). This
smearing out of the resonances means that the effect of vB should be to reduce
Bernstein wave instability. For perpendicular shocks this was demonstrated analyt-
ically by Sanderson and Priest (1972) confirming earlier numerical calculations by
Gary (1970).
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Fig. 7.17. Temperature gradient distortion of the electron distribution function. The slope
of f0 at vy = ωr/ky is proportional to (kyvd −ωr ) for vT = 0 and to (ky(vd +3vT/2)−ωr )
for vT �= 0 (after Priest and Sanderson (1972)).

7.8 Test particle in a Vlasov plasma

In the next chapter we deal with the kinetic theory of plasmas allowing for colli-
sional effects. We shall see there that the important collisional effects in plasmas
are long range many-body interactions rather than short range binary collisions. In
this section we outline an approach to particle–plasma interactions that focuses on
the interaction between a discrete charged particle, or test particle and the other
charges in the plasma using the Vlasov–Poisson equations. We begin by isolating
a single particle of charge qT which is injected at t = 0 (at r0 = 0) and moves
through the plasma with velocity u0, assumed constant. We suppose that our test
charge causes only a small perturbation in the plasma electron density so that we
may reasonably describe the effect of the test charge on the rest of the plasma
electrons using the linearized Vlasov equation (7.22)

(p + ik · v) f1(k, v, p) = − ie

m

[
k · ∂ f0(v)

∂v

]
φ(k, p) (7.71)

where we now take f1(k, v, t = 0) = 0. From Poisson’s equation

k2φ(k, p) = − e

ε0

∫
f1(k, v, p)dv + 1

ε0

qT

(p + k · u0)
(7.72)
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From (7.71) and (7.72) proceeding in parallel with Section 7.3 we find

φ(k, p) = qT

ε0

1

k2 D(k, p)(p + ik · u0)
(7.73)

When it comes to inverting the Laplace time transform we have now an additional
pole at p = −ik · u0. As before we consider the long time behaviour of φ(k, t)
and, since we are principally concerned with the effect of the test electron on the
plasma, only the contribution from the pole at p = −ik · u0 is taken into account
so that

φ(k, t) = qT

ε0

e−ik·u0t

k2 D(k, ω = k · u0)
(7.74)

In the special case u0 � Ve we find φ(k, t) = (qT/ε0)(k2 + k2
D)

−1 where kD is the
reciprocal of the Debye length. From this it is straightforward to retrieve the Debye
shielding potential (see Exercise 7.14)

φ(r, t → ∞) = qT

4πε0

exp(−r/λD)

r
(7.75)

7.8.1 Fluctuations in thermal equilibrium

When we discuss collective effects in radiation from plasmas in Chapter 9 we
shall need a representation for electric field fluctuations in a plasma. Since the
electric field itself is a random variable in both space and time what we want is the
ensemble average of the energy density of the electric field. Using the concept of a
test charge we allow each plasma particle in turn to take the role of the test particle
and sum the contributions of each. From (7.73),

E(r, t) = − iqT

ε0

∫
keik·[r−r0(t)]

k2 D(k, ω = k · u0)
dk (7.76)

where r0(t) = u0t . Allowing each particle in turn to be the test particle we then
find the ensemble average of the electric field by introducing the distribution func-
tion f0(r0, v0) which is the probability density for particles to have velocity v0 at
position r0, i.e.

〈E(r, t)〉 =
∫ ∫

E(r, t) f0(r0, v0) dr0 dv0

For a uniform isotropic plasma clearly 〈E(r, t)〉 = 0.
On the other hand for the ensemble average of the energy density of the electric

field we have

W = ε0

2

∫ ∫
[E(r, t) · E∗(r, t)] f0(r0, v0) dr0 dv0
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Introducing the Fourier–Laplace transform of the ensemble average energy density
W (k, ω) it is straightforward to show (see Exercise 7.14)

W (k, ω) = 2n0e2 F0(ω/k)

ε0k3|D(k, ω)|2 (7.77)

Exercises

7.1 Show that ∇v · a = 0 when the acceleration a is due to the self-consistent
electromagnetic field, E + v × B. Why can we not assume that ∇v · a = 0
when the acceleration is caused by collisional interactions with neighbour-
ing particles?

7.2 Show that the Maxwell distribution function satisfies the Vlasov equation
identically. Explain this in terms of (i) constants of the motion and (ii)
the Maxwell distribution being the asymptotic solution of the collisional
kinetic equation.

7.3 In the weak coupling approximation the potential energy of particle inter-
actions is very much smaller than particle kinetic energy. Show that this
approximation is equivalent to the condition for the number of particles in
the Debye sphere being very large.

7.4 Show that the dispersion relation (6.97) for electron plasma waves, derived
from the warm plasma wave equations, is equivalent to the result (7.34)
obtained from kinetic theory. What assumptions and approximations have
to be made to obtain this equivalence?

Obtain (7.37) from (7.36). Explain mathematically and physically why
this result cannot be obtained from the warm plasma wave equations.

7.5 The plasma used in the measurements of the dispersion characteristics
and Landau damping of Langmuir waves in Figs. 7.4 and 7.5 formed a
column 2.3 m long with an axial electron density typically 1014–1015 m−3.
Electron temperature ranged between 5 and 20 eV and the pressure of the
background gas (mostly hydrogen) was ∼ 10−3 pascals.

Estimate λD and nλ3
D. Determine the mean free path for both electron–

ion and electron–neutral collisions.
Note that in this experiment Malmberg and Wharton did not measure

electron density directly but chose a value which normalized the theoretical
dispersion curve to the data points at low frequencies. Why is this justified?
Why does it appear that in the limit of small k, ω → 0 rather than ωpe?

Plot ω versus k using (7.36) with Te = 9.6 eV and compare your re-
sults with Fig. 7.4. Interpret the discrepancy between this result and the
corresponding line in Fig. 7.4.
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In the experiment two probes were used, one serving as transmitter
while the detector was moved along the axis. The data recorded consisted
of the real and imaginary parts of k. Solve the dispersion relation in the
form k = k(ω) for real ω and obtain an expression for the attenuation of
Langmuir waves as a result of Landau damping. Plot �k/�k as a function
of (vp/Ve)

2, where vp denotes the phase velocity, and compare your results
with Fig. 7.5.

7.6 Dawson (1962) devised a physical model of Landau damping based on
considerations of wave–particle interactions. The rate of change of the
kinetic energy Tk of particles resonant with the wave, computed in the wave
frame, in which the wave electric field is represented as E = E0 sin kx , is

dTk

dt
= n0m

2

∫ ∞

−∞

∂〈 f 〉
∂t

(
v + ω

k

)2
dv (E7.1)

where 〈 f 〉 denotes the spatially averaged distribution function. It follows
from the Vlasov equation that

∂〈 f 〉
∂t

= eE0

m

〈
∂ f

∂v
sin kx

〉
(E7.2)

The solution to the linearized Vlasov equation with the initial condition
f1(x, v, 0) = f1(v, 0) cos kx is

f1(x, v, t) = f1(v, 0) cos(kx − vt)+ eE0

mkv

∂0

∂v
[cos k(x − vt)− cos kx]

(E7.3)
Use (E7.3) in (E7.2) to determine ∂〈 f 〉/∂t and substitute this in (E7.1)

to show that

dTk

dt
= −1

2
neE0

∫ ∞

−∞
f1(v, 0)

(
v + ω

k

)
sin kvt dv

− 1

2m
e2 E2

0

∫ ∞

−∞

∂ f0

∂v

(
v + ω

k

) sin kvt

kv
dv (E7.4)

The first term in (E7.4) decays through phase mixing. In the second term
the only particles that make a contribution to dTk/dt are those moving
slowly in the wave frame and lim

v→0
sin kvt/kv → πδ(kv). Show that

dTk

dt
= −πωω

2
p

k2

∂ f0

∂v

∣∣∣∣
v=0

W (E7.5)

where W = 1
2ε0 E2 is the wave energy density. Now

dTk

dt
= −dW

dt
= −2γLW (E7.6)
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so that the linear damping rate for the electrostatic field set up by the initial
perturbation is, after transforming back to the laboratory frame,

γL = π

2
ω
ω2

p

k2

∂ f0

∂v

∣∣∣∣
v=ω/k

(E7.7)

This is the Landau damping rate (7.37).
7.7 Obtain the dispersion relation (7.45) for ion acoustic waves and the ap-

proximation to the Landau damping decrement (7.46). Compare results
from (7.45), (7.46) with the numerical solution to the dispersion relation
in Fig. 7.7.

Consider a plasma consisting of two ion species and electrons. Suppose
that the temperature of the two ion populations is the same and that one of
the ions is much heavier than the other. Obtain a dispersion relation for ion
acoustic waves in this plasma.

7.8 Definitive measurements of the dispersion characteristics of ion acoustic
waves were made in stable plasmas in Q machines (Wong, Motley and
D’Angelo (1964)). In this work an alkali metal plasma was created by
contact ionization. The plasma was almost completely ionized and close to
thermal equilibrium. Magnetic fields of the order of 1 T meant that �i ∼
100 MHz which is very much higher than the mode frequencies studied.
Measurements were made using potassium and caesium plasmas with Te =
Ti 	 2300 K.

Confirm that to a good approximation the ions are collisionless. Since
the plasma is produced at one end of the column, recombination losses
induce a drift of plasma away from the producing plate. Accordingly,
phase velocities of waves moving both upstream and downstream were
measured:(ω

k

)up

K
= 1.3 × 103 m s−1

(ω
k

)up

Cs
= 0.9 × 103 m s−1

(ω
k

)down

K
= 2.5 × 103 m s−1

(ω
k

)down

Cs
= 1.3 × 103 m s−1

Allowing for a drift velocity V0 (negligible compared with electron
thermal velocity), show that the upstream (−) and downstream (+) phase
velocities

ω

kr
= 2.05

(
kBTi

m i

)1/2

± V0 + 0.72(kBTi/m i)
1/2

2.05 ± V0/(kBTi/m i)1/2

(k = kr + iki ). Use this expression to compare predicted and measured
phase velocities.
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Table 7.1. Ion wave damping

(
δ

λ

)theory

K

(
δ

λ

)expt

K

(
δ

λ

)theory

Cs

(
δ

λ

)expt

Cs

Downstream wave 0.65 0.55
Upstream wave 0.14 0.25

Damping of the ion wave was also measured. The damping distance δ
is that distance over which the wave amplitude is attenuated by a factor
e = exp(1). The damping constant was calculated and found to be

δ

λ
= 1

2π

kr

ki
= 0.39 ± 0.19

V0

(kBTi/m i)1/2

Verify this result and use it to complete Table 7.1.
7.9 Many plasmas both in the laboratory and in space are characterized by

non-Maxwellian distributions. As an example consider a two-component
electron distribution function, f = fh + fc where both hot (h) and cold (c)
components are Maxwellian.

Show that for |ζc| � 1, |ζh| � 1 (7.45) remains valid provided Te is
replaced by an effective temperature defined by

Teff = neTcTh

nhTc + ncTh

If nh 	 nc and Th/Tc 
 1 another acoustic-like mode, the electron
acoustic mode, appears. Refer to Gary (1993) (Section 2.2.3) for a sum-
mary of the characteristics of this mode.

7.10 By taking zero-, first-, and second-order moments of (7.69), obtain (7.66),
(7.68) and (7.70), respectively. [Hint: Keep only linear terms in small
quantities.]

7.11 How is the growth rate for the BTI instability changed when k and vb are
not parallel?

We shall find in Chapter 10 that the one-dimensional BTI evolves to
produce a plateau distribution across a range of velocities

f (v0 < v < vb) = const.

f (v > vb) = 0

Show that this distribution is unstable in the case of Langmuir waves
propagating at an angle θ (�= 0) to the direction of the beam.
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7.12 In a plasma in which electrons drift relative to ions with a drift velocity
vd � Ve, the electron thermal velocity, show that the growth rate of
the ion acoustic instability is given by (7.54). Determine the instability
threshold.

7.13 In magnetized plasmas there is an ion counterpart to electron Bernstein
modes, the ion Bernstein modes. In this case we have to distinguish be-
tween two possible outcomes. One corresponds to the electron mode in that
kz 	 0 and these so-called pure ion Bernstein modes mirror the electron
modes having no damping for exact orthogonal propagation. Moreover, in
the fluid limit they collapse to the lower hybrid mode. However, unlike
the electron case with finite kz such that ω/kz Ve � 1, electrons can now
maintain a Boltzmann distribution by flowing along the magnetic field
lines to cancel charge separation.

Show that the dispersion relation for these neutralized ion Bernstein
waves may be written

1 + k2λ2
De = Te

Ti

∞∑
n=1

2n2�2
i

(ω2 − n2�2
i )

e−λi In(λi) (E7.8)

Take the fluid limit of (E7.8), i.e. λi → 0, and assuming quasi- neutral-
ity, kλDe � 1, retrieve the dispersion relation for electrostatic ion cyclotron
waves

ω2 = �2
i + 2k2

(
kBTe

m i

)
(E7.9)

7.14 Obtain (7.75).

In Chapter 9 it will prove helpful to decompose φ(k, p) in (7.73) into
two parts, the ‘self-field’ of the test charge and the field due to polarization
induced in the plasma by the test charge. Show that the induced field is
determined by

φind = qT

ε0

1

k2(p + ik · u0)

[
1

D(k, p)
− 1

]

Establish the expression for the ensemble-averaged energy density
W (k, ω) in (7.77).

7.15 Plasma kinetic theory developed in this chapter on the basis of the Vlasov–
Maxwell equations relies on linearization, and even then one generally
has to solve dispersion relations numerically. By way of illustration we
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Fig. 7.18. Time evolution of a Langmuir wave from a 1D Vlasov code.

consider a direct numerical integration of the 1D normalized Vlasov–
Poisson equations

∂ f

∂t
+ v

∂ f

∂x
− E

∂ f

∂v
= 0 (E7.10)

∂E

∂x
= 1 −

∫ ∞

−∞
f dv (E7.11)

The Vlasov equation (E7.10) is an advective equation in the 2D phase
space (x, v). If we set about differencing (E7.10) directly we find that the
numerical diffusion that is characteristic of difference schemes in configu-
ration space now gives rise to diffusion in velocity space as well. We shall
see in the following chapter that velocity space diffusion is a property of
the Fokker–Planck collision operator. Clearly a numerical solution to the
Vlasov equation that mimics collisional effects is to be avoided.

An alternative approximation first used by Cheng and Knorr (1976)
introduces a splitting technique in which the Vlasov equation is replaced
by the pair of equations

∂ f

∂t
+ v

∂ f

∂x
= 0

∂ f

∂t
+ E(x, t)

∂ f

∂v
= 0 (E7.12)
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The integration of (E7.12) was reduced to a shifting of the distribution
function:

f ∗(x, v) = f n(x − v�t

2
, v) (E7.13)

f ∗∗(x, v) = f n(x, v − E(x)�t) (E7.14)

f n−1(x, v) = f ∗∗(x − v�t

2
, v) (E7.15)

in which f n denotes the distribution function evaluated at t = n�t . The
shifts are generated by interpolating f in both x and v. Periodic boundary
conditions are applied at boundaries in the x direction while in v the dis-
tribution function is assumed to vanish at the boundaries. The procedure is
straightforward for a 2D phase space.

Construct a 1D Vlasov code and use it to study the evolution of a Lang-
muir wave in time. In particular estimate the Landau damping and compare
this estimate with the predicted damping. Figure 7.18 is output from a 1D
code showing the time evolution of a Langmuir wave.
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Collisional kinetic theory

8.1 Introduction

In Section 7.1 we used a simple heuristic argument to obtain the collisional kinetic
equation

∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v
=
(
∂ f

∂t

)
c

(8.1)

in which the left-hand side is the same as in the Vlasov equation and the right-
hand side, in some way yet to be determined, represents the rate of change of the
distribution function, f , due to collisions. We then argued that, since in plasmas
the force, F, includes the self-consistent electric field which gives rise to plasma
oscillations, the frequency typical of non-collisional changes in f is ωp. Thus, a
dimensional comparison of the left- and right-hand sides of (8.1) suggests that
collisional effects may be ignored provided that the collision frequency νc � ωp,
which is almost always the case. This is, of course, no more than a hand-waving
argument and, in this chapter, we shall examine this matter more carefully.

To begin with we may ask what is meant by the collision frequency. We shall
discover that there are, in fact, several collision frequencies, differing by many or-
ders of magnitude, and that the choice of an appropriate one depends on what kind
of collisions have the greatest influence on the physical effects under investigation.

One effect, for which collisions are crucial, is the establishment of thermody-
namic equilibrium in a plasma. This was touched on in Chapter 3 where ν−1

c was
the time scale for the distribution function to relax to its minimum energy state, the
Maxwell distribution. Aside from this, the main area of plasma physics in which
collisions are important is transport theory. Matter, momentum and energy may be
transferred by the action of collisions. Since plasma heating and containment are
crucial goals of controlled thermonuclear reactor physics, a proper understanding
of plasma transport is fundamental to the success of this programme.

296



8.2 Simple transport coefficients 297

In fact, the development of plasma transport theory has proved to be one of
the most challenging problems in plasma physics. In this chapter our aim is to
do no more than give a short introduction to the topic by means of basic physical
arguments and approximate mathematical models. It is preferable to begin with this
admittedly oversimplified transport theory and so, for the moment, we continue to
beg the question as to what is the collision frequency. Later on in the chapter, using
a more sophisticated model for the collision term in (8.1), we derive parametric
expressions for various collision frequencies and thereby identify which frequency
is appropriate for each transport process.

8.2 Simple transport coefficients

In the equation relating a flux to the thermodynamic force driving the flux, the con-
stant of proportionality is called the transport coefficient. For example, in Fourier’s
law

q = −κ∇T

relating the heat flux q to the temperature gradient ∇T , the constant of propor-
tionality κ is called the coefficient of thermal conductivity. Our aim is to derive
from (8.1) expressions for the most important transport coefficients. We do this
by adopting a very simple model for the collision term, (∂ f/∂t)c, and then taking
velocity moments of the equation to obtain the relationships between various fluxes
and their thermodynamic forces. The model simulates the effect of close binary
collisions where particles experience sudden, local velocity changes and so its
application to plasmas, strictly speaking, ought to be limited to the Lorentz gas
model, which assumes that the electrons scatter off infinitely heavy, stationary ions.

Suppose that a plasma, initially in thermal equilibrium, is disturbed by various
external perturbations giving rise to small, steady state fluxes of matter, momentum
or energy. Since collisions drive the distribution function towards a Maxwellian on
a time scale of order ν−1

c , the simplest representation of the collision term in the
kinetic equation is (

∂ f

∂t

)
c

= −νc( f − f0) (8.2)

where f0 is a local Maxwellian given in general by

f0(r, v) = n(r)
(

m

2πkBT (r)

)3/2

exp
{−m[v − u(r)]2/2kBT (r)

}
(8.3)

In (8.2), known after Bhatnagar, Gross and Krook (1954) as the BGK model, νc

is a constant, which we shall subsequently identify with an appropriate collision
frequency, and ( f − f0) is, of course, the difference between the actual value of
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the distribution function and the local Maxwellian. The BGK model supposes that
collisions act in such a way as to decrease f where it is greater than f0 and increase
f where it is less than f0 at a rate which is proportional to | f − f0|. The method
assumes all perturbations and perturbing forces are small and solves the linearized
kinetic equation. Also, as simple a version of (8.3) is used as is consistent with
the description of the transport process under consideration. We wish to derive
expressions valid for both ions and electrons but to avoid cluttered notation we
suppress the species label and write the particle charge as Ze, where Z = −1 for
electrons.

As a first example let us find an expression for the electrical conductivity σ .
Here a uniform plasma may be assumed and we may take the unperturbed plasma
to be at rest so that f0 is the Maxwell distribution

f0 = fM ≡ n

(
m

2πkBT

)3/2

e−mv2/2kBT (8.4)

The plasma is then subjected to a weak electric field E which is both constant and
uniform. This perturbs the plasma so that f = f0 + f1 and the linearized kinetic
equation is

ZeE
m

· ∂ f0

∂v
= −νc f1 (8.5)

Since

σE = j = Ze
∫

v f dv = Ze
∫

v f1 dv (8.6)

it follows from (8.5), on multiplying by Zev and integrating over velocity space,
that

νc j = Z 2e2

kBT
E ·
∫

vv fM dv (8.7)

Taking E to define the x direction, jy and jz are zero and we find from (8.6) and
(8.7)

σ = nZ2e2

mνc
(8.8)

The electrical conductivity is the current per unit electric field. The mobility of a
particle, µm, is defined as its velocity per unit field and hence

µm = σ

nZe
= Ze

mνc
(8.9)
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Next consider the diffusion coefficient D. This is defined as the particle flux
caused by unit density gradient. Here, assuming uniform temperature, we may take

f0 = n(r)
(

m

2πkBT

)3/2

e−mv2/2kBT

so that with no external forces the linearized kinetic equation is

v · ∂ f0

∂r
= f0

n
v · ∂n

∂r
= −νc f1 (8.10)

Since the particle flux��� = ∫ v f dv, we find on multipling (8.10) by v and integrat-
ing over velocity space

��� = − 1

nνc

∫
v f0v · ∇n dv = −kBT

mνc
∇n

and hence

D = kBT

mνc
(8.11)

From (8.9) and (8.11)
D

µm
= kBT

Ze
(8.12)

which is known as the Einstein relation.
The thermal conductivity κ is usually defined for constant pressure so that, since

p = nkBT (8.13)

one must allow both n and T to be inhomogeneous and take

f0 = n(r)
(

m

2πkBT (r)

)3/2

exp[−mv2/2kBT (r)]

Then the steady state, force-free kinetic equation gives, using (8.13),

f0v · ∂T

∂r

(
mv2

2kBT 2
− 5

2T

)
= −νc f1 (8.14)

The heat flux q is given by

q =
∫

1

2
mv2v f dv = 1

2
m
∫
v2v f1 dv

so that multiplication of (8.14) by 1
2 mv2v and integration over velocity space gives

νcq = 5m

4T

∫
v2vv · ∇T f0 dv − m2

4kBT 2

∫
v4vv · ∇T f0 dv

= −5nk2
BT

2m
∇T
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Hence the thermal conductivity

κ = 5nk2
BT

2mνc

The coefficient of viscosity µ is defined as the shear stress produced by unit
velocity gradient. Taking the local flow velocity u in the x direction and its gradient
in the z direction we may write

f0 = n

(
m

2πkBT

)3/2

exp

{
− m

2kBT
[(vx − u(z))2 + v2

y + v2
z ]

}

and substitution in the kinetic equation gives

mvz

kBT

du

dz
(vx − u) f0 = −νc f1 (8.15)

From the definition of µ

µ
du

dz
= −

∫
m(vx − u)vz f dv = −m

∫
(vx − u)vz f1 dv (8.16)

Thus, multiplying (8.15) by m(vx − u)vz and integrating gives, using (8.16),

µ = nkBT/νc

Note that there is no explicit mass dependence in this result. A consequence of
this is that the viscosity of a plasma is determined by the ions since, as we shall see
in Section 8.5, the ion collision frequency is smaller than that of the electrons by
the square-root of the mass ratio. For all the other transport coefficients calculated
so far, this consideration is outweighed by the explicit appearance of the particle
mass in the denominator so that the electrons dominate these transport processes.

8.2.1 Ambipolar diffusion

So far we have investigated transport under the simplest possible conditions. To
complete this discussion we examine some important practical considerations. For
example, in the presence of a density gradient the diffusion of electrons and ions
will occur in general at different rates. When particle temperatures are approxi-
mately equal, the electrons diffuse more rapidly than the ions and if the containing
walls are insulated, a space charge is set up due to the accumulation of excess
electrons near the wall. This has the effect of simultaneously decreasing electron
mobility µe and increasing ion mobility µi. The ion and electron fluxes are deter-
mined by

���i = −Di∇ni + niµiE
���e = −De∇ne + neµeE

}
(8.17)
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where E is the field due to the space charge. A steady state is reached when j = 0
so that there is no further build-up of space charge. Then Z���i = ���e = ���, say, and
eliminating E from (8.17), assuming Zni = ne = n, gives

��� = −Da∇n

where the ambipolar diffusion coefficient

Da = µi De − µe Di

µi − µe

Using the Einstein relation (8.12) and assuming Ti = Te this becomes

Da = (Z + 1)Di De

Z Di + De
≈ (Z + 1)Di

since De 
 Z Di. Thus, the resultant ambipolar diffusion is determined by the
slower ion rate.

In the steady state the field set up by the space charge is, from (8.17),

E = (Di − De)

(µi − µe)

∇n

n
≈ −kBT

ne
∇n (8.18)

Since

∇ · E = e

ε0
(Zni − ne) (8.19)

the quasi-neutrality condition Zni ≈ ne implies from (8.18) and (8.19) that

Zni − ne

n
∼ ε0kBT

ne2L2
=
(
λD

L

)2

� 1

where L is the length scale of the boundary layer over which the field and density
gradients exist. Thus, quasi-neutrality is established within a few Debye lengths of
the insulating wall; this defines the sheath thickness.

8.2.2 Diffusion in a magnetic field

Finally, let us consider diffusion in a magnetized plasma. For a plasma in a steady
state with no electric field we have from the kinetic equation

v · ∂ f

∂r
+ Ze

m
(v × B) · ∂ f

∂v
= −νc f1

which becomes on linearization

v · ∂ f0

∂r
+ Ze

m
(v × B0) · ∂ f1

∂v
= −νc f1 (8.20)
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Fig. 8.1. Collisional diffusion in a strong magnetic field.

If we suppose that B0 is in the z direction and the density gradient is in the z and x
directions, then we choose f0 to be the bi-Maxwellian distribution

f0 = n(x, z)

(
m

2πkBT⊥

)(
m

2πkBT‖

)1/2

exp

{
−m(v2

x + v2
y)

2kBT⊥
− mv2

z

2kBT‖

}

since a plasma may have, in general, different parallel and perpendicular tempera-
tures. The vx , vy , and vz moments of (8.20) give

(kBT⊥/m)(∂n/∂x)−��y = −νc�x

��x = −νc�y

(kBT‖/m)(∂n/∂z) = −νc�z


 (8.21)

where � = ZeB/m is the cyclotron frequency.
Defining D⊥ and D‖ by

�x = −D⊥
∂n

∂x
�z = −D‖

∂n

∂z

we find from (8.21)

D⊥ = kBT⊥
mνc[1 + (�/νc)2]

D‖ = kBT‖
mνc

showing that diffusion along the magnetic field is unaffected by the field, while
diffusion across the field is reduced by the factor (1 + (�/νc)

2)−1.
In the limit (�/νc)

2 → 0, we recover, as expected, the unmagnetized result for
D⊥ = kBT⊥/mνc = λ2

cνc, where λc is the collisional mean free path for motion
across the field. In the opposite limit D⊥ ≈ kBT⊥νc/m�2 = r2

Lνc, where rL is the
Larmor radius. Thus, the Larmor radius replaces the mean free path as the length
scale for diffusion but the time scale is still the collision time.

This is explained in Fig. 8.1 which shows the effect of collisions on gyrating
particles. For simplicity, a head-on collision is considered between particles with
equal speeds as a result of which the particles exchange orbits allowing each to
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Fig. 8.2. Gyro-magnetic particle flux.

progress in opposite directions along the x-axis. In the absence of a density gradient
there would, of course, be no net flux but, for ∂n/∂x > 0, there are more particles
travelling to the left than to the right and hence there is a net flux down the density
gradient. Since the flux in the x direction is entirely dependent upon collisions and
particles describe their Larmor orbits in search of a collision partner, it follows that
the diffusion length scale is now determined by the Larmor radius rather than the
collisional mean free path.

Note that there is a flux in the y direction as well,

�y = −�

νc
�x = �D⊥

νc

∂n

∂x
→ r2

L�
∂n

∂x

in the limit (�/νc)
2 → ∞. This gyro-magnetic flux is the dominant flux in this

limit and is independent of the collision frequency! Applying the argument used
in Fig. 8.1 to collisions occurring along the y-axis yields no net flux because there
is no density gradient in this direction. On the other hand, in a thin sheet in the
yz-plane there are more particles to the right than to the left so that contributions
to �y from particles whose Larmor orbits intersect the sheet do not cancel out,
as demonstrated in Fig. 8.2. Collisions play no part in this flux which is entirely
gyro-magnetic.
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8.3 Neoclassical transport

The model used in the preceding section to calculate transport coefficients avoids
various complications and interdependences. Nevertheless, for collisional plasma
transport in a uniform magnetic field, generally referred to as classical transport,
it gives the correct parametric dependence. However, the magnetic fields needed
for toroidal confinement are both curved and inhomogeneous so it is essential to
see what modifications to classical transport theory are needed as a result. This
development of the theory is known as neoclassical transport.

As for classical transport, a rigorous treatment requires solution of the kinetic
equations and is very complicated. However, order of magnitude expressions can
be obtained by simple heuristic arguments beginning with the expressions obtained
for diffusion in a uniform magnetic field. Diffusion coefficients have dimensions of
(length)2/time and for D‖, where the magnetic field has no effect, we have shown
that

D‖ = λ2
c/τc

since the collisional mean free path λc = Vthτc and τc is the interval between
collisions. On the other hand D⊥, for the strong field case |�| 
 νc, is expressed
as

D⊥ = r2
L/τc

Each of these results may be interpreted in terms of a random walk model of
diffusion. For parallel diffusion the particle travels, on average, a distance λc be-
fore a collision randomly alters its direction, the average interval for such random
changes being τc. The time interval is the same for perpendicular diffusion since
it is still collisions which cause the random realignments but particles restricted to
Larmor orbits cannot travel a mean free path in the perpendicular direction and so
λc must be replaced by rL.

This simple picture changes fundamentally once the field becomes inhomoge-
neous because particle guiding centres are no longer attached to field lines but
drift across them. The Larmor orbits are of no significance in this case since the
perpendicular migration is determined by the guiding centre motion. To find the
appropriate length scale for perpendicular diffusion we need to consider the global
geometry of the field. In a toroidal plasma, as we know from the discussion in
Section 4.3.2, the field lines turn in the poloidal direction as they wind around
the torus so that one ‘cycle’, defined by the line returning to its starting point,
is completed after travelling a distance q R, where q is the safety factor and R
is the (major) radial coordinate of the guiding centre. According to the random
walk model the time for the particle guiding centre to travel this distance is
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given by

t = (q R)2/D‖ = (q R)2/V 2
thτc

assuming parallel diffusion is collisional. During this time the guiding centre mi-
grates in the perpendicular direction a distance of order vdt , where vd is the drift
speed, and

Dcol
⊥ = (vdt)2

t
=
(
vdq R

Vth

)2

/τc

In general, the actual drift velocity, being the resultant of both grad B and curvature
drifts, is given, in order of magnitude, by

vd ∼ V 2
th

|�|R
and hence

Dcol
⊥ ≈ q2r2

L/τc

Typically, the safety factor q ∼ 3 so this is an order of magnitude greater than for
a uniform field.

This result is valid provided q R > λc for we have assumed that diffusion in
the parallel direction is collisional. In fact, it is frequently the case that q R < λc

and then a further modification is needed. Because the particles migrate across the
poloidal cross-section they are subject to a varying toroidal field given by

B = B0 R0

R
= B0 R0

R0 + r cos θ
≈ B0(1 − ε cos θ)

where R0 is the major radius, B0 the field strength on the minor axis and ε = r/R0

the inverse aspect ratio, assumed to be small. It follows that those particles with
small enough v‖ may be reflected by the magnetic mirror effect. Such particles are
trapped in the banana-shaped orbits discussed in Section 2.10 where it was shown
that these particles have velocities satisfying the condition

|v‖(0)|/v⊥(0) ≤ (2ε)1/2

If nb is the number density of such particles, for an isotropic velocity distribution,

nb

n
∝ v‖(0)
v⊥(0)

∝ ε1/2

is small. However, the effect on diffusion is significant because v‖ is also small and
so the time for the trapped particles to traverse the orbit is correspondingly long, as
is the resultant perpendicular migration.



306 Collisional kinetic theory

Fig. 8.3. Variation of perpendicular diffusion coefficient with collision frequency.

Repeating the random walk calculation for the perpendicular diffusion of the
trapped particles we now have a length scale given by

vd

(
τBVth

v‖

)
=
(

V 2
th

|�|R
)(

q R

ε1/2Vth

)
= Vthq

ε1/2|�|
where τB = (q R/Vth) is the bounce time. The particle will remain trapped in the
banana orbit until it is scattered out of the trapped velocity band by collisions.
We shall show in Section 8.5 that the effective collision frequency for vanishingly
small velocity V varies as V −2 and hence the effective collision time in this case is

τeff = ετc

Bearing in mind that only a fraction ∝ ε1/2 of the particles are trapped in banana
orbits, it follows that the effective diffusion coefficient across the field lines is given
by

Dban
⊥ = ε1/2

(
qVth

ε1/2�

)2

/ετc = q2r2
L

ε3/2τc

which is a factor ε−3/2 greater than that obtained for untrapped (or passing) parti-
cles. This represents a further order of magnitude increase over the uniform field
result for typical aspect ratios.

These results are represented in Fig. 8.3 which shows schematically the variation
of the perpendicular diffusion coefficient with collision frequency νc = τ−1

c . At
lowest collision frequencies we are in the banana regime for which τeff > τB/ε

1/2,
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that is τB < ε3/2τc. In the collisional (or Pfirsch–Schlüter) regime we have
|�|−1 � τc < τB and it follows that there is an intermediate regime in which
τB < τc < τB/ε

3/2. This is the most difficult regime to analyse but, as one can
see from the figure, the perpendicular diffusion coefficient has the same order of
magnitude at either end of the interval ε3/2 < νcτB < 1 and hence this is known as
the plateau regime.

8.4 Fokker–Planck equation

The BGK model for the collision term in (8.1), while useful for the sort of cal-
culation carried out in Section 8.2, is too simple to give a realistic representation
of collisional effects in quantitative calculations. It does not, for example, conserve
particle number, momentum or energy. Also, as already noted, it assumes that there
is a given collision frequency so we cannot use the model to discover the properties
(e.g. parametric dependence) of collision frequencies. We must, therefore, turn to
more sophisticated models.

At first, plasma physicists used the well-known Boltzmann collision integral for
(∂ f/∂t)c even though it was recognized that logically this was an unsatisfactory
way to proceed. The Boltzmann derivation assumes short range, binary collisions
whereas in a plasma there may be typically a thousand particles in the Debye
sphere, all of which are interacting with each other simultaneously so that collisions
are characteristically long range (compared with the mean interparticle separation)
and many-body. Most of these collisions are ‘weak’ in the sense that the potential
energy of the interaction (∼ e2/λD) is very much less than the mean thermal energy
(∼ kBT ) and it can easily be shown (see Exercise 8.4) that the cumulative effect
of the many weak collisions far outweighs the effect of the rare strong interactions
for which e2/r ∼ kBT , that is r/λD ∼ (nλ3

D)
−1 � 1.

In these circumstances, akin to those met in Brownian motion, the Fokker–
Planck approach is more appropriate. Here, one supposes that a function ψ(v,�v)
may be defined such thatψ is the probability that a particle with velocity v acquires
a small increment �v in a time �t . It then follows that

f (r, v, t) =
∫

f (r, v −�v, t −�t)ψ(v −�v,�v)d(�v) (8.22)

since this equation simply states that we arive at f (r, v, t) by ‘summing over’ all
possible increments �v which were likely to occur �t seconds earlier. Note that
ψ(v,�v) is assumed independent of t , i.e. the collisional process has no ‘memory’
of earlier collisions; a process having this property is said to be Markovian. This is
discussed further in Section 12.6.2.
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Since the ‘increments’ �v are small the integral in (8.22) may be expanded to
give

f (r, v, t) =
∫

d(�v)
{

f (r, v, t −�t)ψ(v,�v)−�v · ∂

∂v
( fψ)

+ 1

2
�v�v :

∂2( fψ)

∂v∂v
+ · · ·

}
(8.23)

Clearly, the total probability of all possible deflections must be unity:∫
ψ d(�v) = 1

Then, defining the rate of change of f due to collisions by(
∂ f

∂t

)
c

= f (r, v, t)− f (r, v, t −�t)

�t

we find from (8.23)(
∂ f

∂t

)
c

= − ∂

∂v
·
(

f 〈�v〉
�t

)
+ 1

2

∂2

∂v∂v
:

(
f 〈�v�v〉

�t

)
(8.24)

where { 〈�v〉
〈�v�v〉

}
=
∫
ψ(v,�v)

{
�v

�v�v

}
d(�v)

are the average changes in �v and �v�v in time �t . It is important to note here
that both of these average changes are proportional to �t whereas third and higher
order terms in the Taylor expansion in (8.23) are of higher order in �t and have,
therefore, been dropped. The reason why 〈�v�v〉 is of the same order in �t as
〈�v〉 is that collisions are treated as a random walk process in which mean square
displacements increase linearly with time.

Substitution of (8.24) in (8.1) gives the Fokker–Planck equation. Until we define
the probability function ψ(v,�v), however, it remains a formal statement. Various
forms of the Fokker–Planck equation have been derived for a plasma including
attempts to describe many-particle collisions in terms of rapidly oscillating electric
fields (Gasiorowicz, Neuman and Riddell (1956)) and charge density fluctuations
(Kaufman (1960)). We shall follow the derivation of Rosenbluth, MacDonald and
Judd (1957) who, using heuristic arguments like those of Landau (1946), assumed
that multiple collisions could be treated as sequences of binary collisions and
calculated 〈�v〉/�t and 〈�v�v〉/�t on the basis of the dynamics of Coulomb
collisions.
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We consider collisions between a particle of mass m with initial velocity v and
a ‘scattering’ particle of mass ms and initial velocity vs . It is convenient to work in
the centre of mass frame of reference and define the initial relative velocity

g = v − vs

and the centre of mass velocity

V = mv + msvs

m + ms

We ignore the effect of any macroscopic forces over the duration of a collision on
the assumption that they act over length scales much greater than the Debye length.
Then, denoting final velocities by primed variables, we may write

v = V + ms

m + ms
g v′ = V′ + ms

m + ms
g′

and conservation of momentum and energy gives

V = V′ |g| = |g′|
Thus,

�v = v′ − v = ms

m + ms
(g′ − g) = ms

m + ms
�g (8.25)

Now if the differential scattering cross-section is σ(|g|, θ) then the probability in
time�t of collisions with scattering angle θ is proportional to�t fs(vs)|g|σ(|g|, θ),
where fs is the distribution function of scattering particles, and so the average value
of �v is given by

〈�v〉 = �t
∫

dvs d� fs(vs)|g|σ(|g|, θ)�v

= ms

m + ms
�t
∫

dvs d� fs(vs)|g|σ(|g|, θ)�g (8.26)

where the integration is over the solid angle � and all scattering velocities vs .
With reference to Fig. 8.4 we see that all particles passing through the element

of area 2πb db are scattered into the element of solid angle d� = 2π sin θ dθ and
so the differential scattering cross-section

σ(|g|, θ) = −2πb db

d�
= − b db

sin θ dθ

where the minus sign is introduced to make σ a positive quantity since db/dθ is
negative. The fundamental relationship between the impact parameter b and the
scattering angle θ for Coulomb interactions is (see Goldstein (1959))

b = b0 cot θ/2 (8.27)
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Fig. 8.4. Scattering in centre of mass frame.

Fig. 8.5. Resolution of g′.

where

b0 = zzse2(m + ms)

4πε0mms |g|2

is the impact parameter for right-angle scattering and z, zs are the atomic numbers†
of the scattered and scattering particles, respectively.

† We use lower case z here since we want to allow for z = Z (ions) and z = −1 (electrons).
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To carry out the integration over solid angle we first resolve g′ into its com-
ponents in a rectangular coordinate system with polar axis parallel to g. This is
illustrated in Fig. 8.5 and leads to the result

�g = g′ − g = g[sin θ cosφ e1 + sin θ sinφ e2 + (cos θ − 1) e3]

On integration over the azimuthal angle φ, components perpendicular to g vanish
(scattering is equally likely in all perpendicular directions) and one finds

〈�v〉
�t

= −�
∑

s

z2
s

(
m + ms

ms

)∫
g
g3

fs(vs) dvs (8.28)

where the sum is over all types of scattering particles and we have assumed

� = z2e4

4πε2
0m2

ln(λD/b0) ≈ z2e4

4πε2
0m2

ln

where ln is the Coulomb logarithm. In deriving this result we have applied a cut-
off at small scattering angles corresponding to θmin = 2b0/λD which is equivalent
to a maximum impact parameter bmax = λD, as can be seen from (8.27) in the limit
of small θ . Strictly speaking, this means that � should have a subscript s, indeed
is a function of vs , but since this dependence lies entirely inside the argument of
the logarithm it is customary to ignore it. Thus, we substitute the plasma  for
λD/b0, and treat � as a constant. In evaluating 〈�v�v〉 only the cross terms in
〈�g�g〉 now vanish on integration over φ. However, since weak collisions (small
θ ) dominate, the e3e3 term, which is of order θ4 (compared with the e1e1 and e2e2

terms which are of order θ2) turns out to be smaller by a factor ln(λD/b0) and we
neglect it with the result

〈�vi�v j 〉
�t

= �
∑

s

z2
s

∫
g2δi j − gi g j

g3
fs(vs) dvs (8.29)

Noting that

g
g3

= − ∂

∂v

(
1

g

)
(8.30)

and
g2δi j − gi g j

g3
= ∂2g

∂vi∂v j
(8.31)

we may express the Fokker–Planck coefficients in terms of the Rosenbluth poten-
tials defined by

G(v) =
∑

s

z2
s

∫
|v − vs | fs(vs) dvs (8.32)
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and

H(v) =
∑

s

z2
s

(
m + ms

ms

)∫
fs(vs)

|v − vs | dvs (8.33)

From (8.28) and (8.30) we have

〈�v〉
�t

= �
∂H

∂v

and from (8.29) and (8.31)

〈�vi�v j 〉
�t

= �
∂2G

∂vi∂v j

which, on substitution in (8.24), gives(
∂ f

∂t

)
c

= −� ∂

∂v
·
(

f
∂H

∂v

)
+ 1

2
�

∂2

∂v∂v
:

(
f
∂2G

∂v∂v

)
(8.34)

This is the usual form of the Fokker–Planck collision term. As we shall see in
the next section, the first term in (8.34) produces a deceleration of a test particle
and is known as the coefficient of dynamical friction. The second term accounts for
the spreading of a unidirectional beam throughout velocity space and is called the
coefficient of diffusion. A complication of the Fokker–Planck coefficients is their
non-linear dependence on the distribution function f which appears explicitly and
implicitly in the Rosenbluth potentials. An approximation frequently made is to use
Maxwell distributions in the Rosenbluth potentials though this is really justified
only for near-equilibrium plasmas.

Another interesting and useful form of the Fokker–Planck collision term is ob-
tained (see Exercise 8.5) by noting that

∂

∂v
·
(
∂2g

∂v∂v

)
= −2g

g3
= − ∂

∂vs
·
(
∂2g

∂v∂v

)
(8.35)

Substituting this expression for g/g3 in (8.28) and integrating by parts with respect
to vs we obtain(

∂ f

∂t

)
c

= �m

2

∂

∂v
·
∑

s

z2
s

∫
dvs

∂2|v − vs |
∂v∂v

·
(

fs(vs)

m

∂ f (v)
∂v

− f (v)
ms

∂ fs(vs)

∂vs

)
(8.36)

It can be shown (see Hinton (1983)) that the Fokker–Planck equation has the
following desirable properties:

• the distribution function cannot become negative – collisions act to fill holes in
velocity space;

• particle number, momentum and energy are conserved;
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• it satisfies Boltzmann’s H-theorem, i.e. the only time-independent distribution
functions satisfying (∂ f/∂t)c = 0 are Maxwellians.

8.5 Collisional parameters

By taking velocity moments of the Fokker–Planck equation we may define and
find estimates for various collisional parameters. The sort of parameters of interest
are the time scales for an arbitrary distribution of velocities to become Maxwellian
and for the equalization of ion and electron temperatures. A very simple model that
permits the calculation of rough estimates of such time scales is the test particle
model in which a single test particle (either an electron or an ion) travels through a
uniform, field-free plasma in thermal equilibrium. Then the Fokker–Planck equa-
tion is simply

∂ f

∂t
= −� ∂

∂v
·
(

f
∂H

∂v

)
+ 1

2
�

∂2

∂v∂v
:

(
f
∂2G

∂v∂v

)
(8.37)

Its moments give expressions for the rates of change of velocity, energy, etc. and the
distribution functions are simple enough for the collision moments to be evaluated.

The distribution function of the test particle is

f (v, t) = δ[v − V(t)] (8.38)

where V(t) is the particle velocity at time t and we find estimates for various col-
lisional parameters by evaluating the velocity moments at t = 0. A more rigorous
approach is presented by Hinton (1983) but the results are the same.

Multiplying (8.37) by v and integrating gives

∂V
∂t

= �
∂H(V)
∂V

(8.39)

where the term in G has vanished on integration by parts twice. This confirms the
statement in the previous section that the first Fokker–Planck coefficient represents
the dynamical friction decelerating the test particle.

Since the plasma particles, the scatterers, are assumed to be in thermal equilib-
rium

fs(vs) = fM(vs) = nsa3
s

π3/2
e−a2

s v
2
s (8.40)

where

a2
s = ms

2kBTs

and it follows that

H(v) =
∑

s

z2
s

(
m + ms

ms

)
ns

v
φ(asv) (8.41)



314 Collisional kinetic theory

where φ(x) is the error function

φ(x) = 2√
π

∫ x

0
e−y2

dy

Noting that H(v) is an isotropic function (a direct consequence of assuming fs to
be isotropic) it follows that (8.39) may be written

∂V

∂t
= �

∂H(V )

∂V
= −νf(V )V

say, defining the frictional coefficient νf. Hence,

νf = 2�

V

∑
s

z2
s

(
m + ms

ms

)
nsa

2
s�(as V ) (8.42)

where

�(x) = φ(x)− xφ′(x)
2x2

The first observation from (8.42) is that, for given V , νf decreases as the plasma
density decreases or its temperature increases; in other words, collisions are less
effective under low density, high temperature conditions. Also, using the limiting
values

φ(x) → 2x/
√
π �(x) → 2x/3

√
π as x → 0

φ → 1 �(x) → 1/2x2 as x → ∞
}

(8.43)

we see that for very fast test particles (as V → ∞) νf ∝ V −3, while in the opposite
limit (as V → 0), where V is much less than the thermal speeds, νf is independent
of V . Thus, the frictional deceleration of a test particle increases with V at low
speeds but decreases with V at sufficiently high speeds. A consequence of this is
that the current in a plasma tends to be carried predominantly by the electrons in
the tail of the velocity distribution.

Another possible consequence is a phenomenon known as electron runaway. If
one imagines an electron subjected to a constant accelerating force then a balance
will be achieved at low velocities but not at those velocities for which the frictional
force is less than the accelerating force and decreasing. The situation is represented
schematically in Fig. 8.6 where A is the acceleration and F(V ) = νf(V )V is
the frictional deceleration. The equilibrium point at V1 is stable but that at V2 is
unstable and an electron with V > V2 is continually accelerated. In practice this
is likely to be limited by instabilities, such as the two-stream instability, driven by
the free energy in the runaway electrons.

Although the frictional coefficient is an important parameter for such matters as
the slowing down of particle beams, collision frequencies, representing all manner



8.5 Collisional parameters 315

Fig. 8.6. Schematic illustration of electron runaway.

of collisional effects, must be defined more generally. By convention the collision
frequency is taken to be the inverse of the mean time for a particle to be deflected
through a right-angle. To find a measure of this using the test particle model we take
the v2

⊥ moment of (8.37) where v2
⊥ is the sum of the squares of the components of

v perpendicular to V(0); it is necessary to use a mean square deviation since, in an
isotropic plasma, the mean deviation is zero. Here we find (see Exercise 8.6) that
only the second term in (8.37) gives a non-zero contribution (as predicted in the
previous section) which may be written as

∂V 2
⊥

∂t
= 2�

V

∂G

∂V
(8.44)

Substituting (8.40) in (8.32) gives

G(v) =
∑

s

z2
s ns

[(
v + 1

2a2
s v

)
φ(asv)+ e−a2

s v
2

as
√
π

]
(8.45)

and
∂G

∂v
=
∑

s

z2
s ns[φ(asv)−�(asv)] (8.46)

It is convenient to define separate collision frequencies for the scatterers so we
write (8.44) as

∂V 2
⊥

∂t
= 2�

V

∂G

∂V
=
∑

s

νs V 2
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and using (8.46) we have

νs(V ) = 2�

V 3
z2

s ns[φ(as V )−�(as V )] (8.47)

This parameter gives a measure of the time scale for relaxation to isotropy of an
initially anisotropic distribution which is perhaps the chief reason for its adoption
as the collision frequency. Using the asymptotic expansions (8.43) we see that νs ∝
V −2 for as V → 0 and νs ∝ V −3 for as V → ∞.

It is of particular interest to compare electron–electron, ion–ion, electron–ion
and ion–electron collision frequencies which we label νab, where a indicates the
scattered (test) particle and b the scattering particles. From (8.47) we find

νee = nee4 ln

2πε2
0m2

e V 3
[φ(aeV )−�(aeV )]

νii = ni Z4e4 ln

2πε2
0m2

i V 3
[φ(aiV )−�(aiV )]

νei = ni Z2e4 ln

2πε2
0m2

e V 3
[φ(aiV )−�(aiV )]

νie = ne Z2e4 ln

2πε2
0m2

i V 3
[φ(aeV )−�(aeV )]

where Ze is the ionic charge so that ne = Zni. To estimate relaxation times we
take the test particle speed V to be thermal in which case the terms in square
brackets in νee and νii become constants of order one but for νei and νie we must
take respectively the large and small argument limits in (8.43) with the result

νee : νii : νei : νie ∼ 1 : Z3

(
me

m i

)1/2 (Te

Ti

)3/2

: Z : Z2

(
me

m i

)(
Te

Ti

)

Except when Z or Te/Ti is large, it is the mass ratio which dominates this com-
parison of collision frequencies and we see that νei ∼ Zνee 
 νii 
 νie. The
first of these gross inequalities arises because thermal ion speeds are less than
thermal electron speeds, by (me/m i)

1/2 if Te ≈ Ti, and so ions take longer to meet
each other. The second reflects the fact that the electrons are not very effective in
deflecting the much heavier ions.

Another set of useful collision parameters is obtained by considering the energy
exchange between the test particle and the scatterers. Here again we use a mean
square deviation to define the parameters because the test particle is both losing
energy due to its deceleration in the forward direction and gaining energy in the
perpendicular direction by its deflection. If W is the energy of the test particle,
�W = m[v2 − V 2(0)]/2 and we take the (�W )2 moment of (8.37). Denoting this
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by (�W )2, we find

∂(�W )2

∂t
= �m2V 2 ∂

2G

∂V 2

= 2�m2V
∑

s

nsz2
s�(as V )

=
∑

s

νE
s

(
mV 2

2

)2

(8.48)

say, defining collision coefficients νE
s for energy exchange. Thus,

νE
s (V ) = 8�nsz2

s�(as V )

V 3
(8.49)

Since [φ(1) − �(1)] ≈ 0.6 and �(1) ≈ 0.2, comparing (8.47) and (8.49) we see
that for thermal speeds νE

ee ∼ νee and νE
ii ∼ νii. On the other hand, energy exchange

between ions and electrons is the least efficient process since at most a fraction
(me/m i) of the kinetic energy involved in a collision can be transferred from one
particle to the other. For thermal speeds, low Z and Te ∼ Ti we find

νE
ee : νE

ii : νE
ei (∼ νE

ie ) ∼ 1 :

(
me

m i

)1/2

:

(
me

m i

)

Thus, in an anisotropic plasma with unequal electron and ion temperatures, the
electrons will relax to a Maxwellian distribution within a few electron–electron
collision times followed by the ions in a few ion–ion collision times and finally,
after a time of order (m i/me)ν

−1
ee , equilibration of the electron and ion temperatures

takes place.

8.6 Collisional relaxation

The collision frequencies derived in the previous section are useful for making
order of magnitude calculations but their velocity dependence means that the actual
time taken for the relaxation of the high velocity part of a distribution function
to a Maxwellian can be very much greater than the ‘thermal speed’ estimate.
Numerical studies have shown that typically these estimates are good for the bulk
of the distribution out to approximately twice the thermal speed but beyond that
relaxation is progressively much slower. The assumption, usually made even for
collisionless plasmas, that the distribution function is approximately Maxwellian
is, therefore, often not sustainable. Consequently, there has long been an interest in
feasible alternative distribution functions.
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One important example is the self-similar distribution function of order s defined
as

fs(v) = csn

π3/2v3
s

exp(−vs/vs
s )

The constants cs and vs are given by

cs = 3π1/2

4�(1 + 3/s)

v2
s = kBT s�(1 + 3/s)

m�(5/s)

where n is the particle number density and �(x) is the gamma function. It is easily
seen that s = 2 corresponds to the Maxwellian distribution.

Jones (1980), Langdon (1980) and Balescu (1982) have shown that laser-
irradiated high Z plasmas reach a self-similar state with s = 5 for the electrons
and s = 2 for the ions. Compared with the Maxwellian, self-similar distributions
with s > 0 (also known as super-Gaussian distributions) are flat-topped and for
this reason they have been of interest to space-plasma physicists in explaining the
frequently observed electron distributions at the Earth’s bow shock (Feldman et
al. (1983)). In weak turbulence theory, anomalous transport coefficients have been
derived from self-similar distributions (see Dum (1978)).

As we have seen in this chapter and will discuss more extensively in Chapter 12,
the derivation of transport coefficients is directly related to the relaxation of the dis-
tribution function and involves the calculation of its velocity moments. For this rea-
son in particular there has been considerable analytical and numerical investigation
of the collisional relaxation of non-Maxwellian distribution functions. Analytical
progress depends upon some simplifying assumption, usually that the distribution
function remains in the same class of function (e.g. remains self-similar but with
varying s) throughout the relaxation. Given our remarks in the opening paragraph
of this section, this is hardly likely to be the case and numerical studies based on
the Fokker–Planck equation have confirmed this suspicion. As an illustration we
shall consider two examples of temperature equalization in a single species plasma.
Plasmas with two-temperature velocity distributions are created in the laboratory
in heating processes and occur naturally in space.

The isotropic two-temperature distribution function

f (v2) = fc(v
2; nc, Tc)+ fh(v

2; nh, Th)

where both fc and fh are Maxwell distributions (8.4) and the subscripts denote cold
and hot components, is used for plasmas created, for example, by the injection of
a hot plasma into a cooler, background plasma. It has been noted in numerical
simulations of such plasmas that the temperatures of the separate components
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Fig. 8.7. Relaxation of isotropic two-temperature plasma (after McGowan and Sanderson
(1992)).

change much more slowly than their densities. McGowan and Sanderson (1992)
modelled their evolution by

f (v2, t) = f (v2; n(t), T )+ fc(v
2; nc(t), Tc)+ fh(v

2; nh(t), Th)

where all three components are Maxwellians with constant temperatures but vari-
able densities. The total number density n0 and the average (or final) temperature
T are then given by

n0 = n(t)+ nc(t)+ nh(t)

n0T = n(t)T + nc(t)Tc + nh(t)Th

representing the conservation of particles and energy. Initially n(0) = 0 and finally
n(∞) = n0, this component having grown at the expense of the other two for
which nc(∞) = nh(∞) = 0. The collisional relaxation of such a plasma was
shown to be well-represented by this model and is illustrated in Fig. 8.7, where the
hot component appears as a succession of straight lines of constant slope (constant
Th).

The anisotropic, two-temperature distribution most widely used is the bi-
Maxwellian distribution, introduced in Section 8.2.2,

f (v) = n0

(
m

2πkBT⊥

)(
m

2πkBT‖

)1/2

exp

(
− mv2

⊥
2kBT⊥

− mv2
‖

2kBT‖

)
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Fig. 8.8. Relaxation of a bi-Maxwellian plasma for (a) ε = 5 (oblate distribution) and (b)
ε = 0.2 (prolate distribution) (after McGowan and Sanderson (1992)).

Here the anisotropy introduced by a strong magnetic field enables the velocity
distributions for motion along the field lines (v‖) and across the field lines (v⊥)
to differ significantly.
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Schamel et al. (1989), following earlier work by Kogan (1961) derived an evo-
lution equation for the relaxation of a bi-Maxwellian distribution in terms of the
anisotropy parameter ε = T⊥/T‖. The equation is

dε

dτ
= (1 + 2ε)5/2

4(1 − ε)
[(2 + ε)g(ε)− 3] (8.50)

where

g(ε) = tanh−1 |ε − 1|1/2

|ε − 1|1/2

τ = νEt

νE = 8π1/2n(Ze)4 ln

(3mk3
BT 3)1/2ε2

0

However, this assumes that the distribution function remains bi-Maxwellian. Nu-
merical studies by Jorna and Wood (1987) and McGowan and Sanderson (1992)
have shown that this is not a valid assumption, especially for the prolate case ε < 1.
Despite this, the evolution equation, which involves moments of the distribution
function, does give reliable results for the oblate case (ε > 1) where the moments
are less sensitive to the departures from bi-Maxwellian form. In Fig. 8.8 solid lines
denote the numerical results while the circles are points determined analytically
from (8.50).

Exercises

8.1 Repeat the calculation of electrical conductivity σ carried out in Sec-
tion 8.2 but allowing for a velocity dependent collision frequency. Show
that the result is

σ = Z2e2

12πε0kBT

∫
v2 fM dv
νc(v)

8.2 Explain physically why you would expect the ions to determine the coef-
ficient of viscosity in a plasma but the electrons to determine the electrical
and thermal transport coefficients.

What property of a plasma leads to ion determination of the ambipolar
diffusion coefficient?

8.3 In neoclassical transport show that the fraction of particles performing
banana orbits is proportional to the square root of the inverse aspect ratio.

8.4 Show that the cumulative effect of weak collisions in a plasma outweighs
the effect of rare strong interactions by comparing the mean time for a
single π/2 deflection with the plasma collision time ν−1

c .
8.5 Verify (8.35) and hence obtain (8.36).
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8.6 By carrying out the integrations by parts, show that in (8.37) the term in
G gives no contribution to dynamical friction and that in H gives none to
diffusion.

8.7 By adding a driving term −(eE/m) · ∂ f/∂v to the left-hand side of (8.37)
and taking the first-order moment, as in the derivation of (8.39), find the
relationship between the velocity V and field strength E for electron run-
away (i.e. such that ∂V/∂t > 0).

8.8 Show that the Fokker–Planck equation that describes the evolution of the
electron velocity distribution function fe(v, t) for collisions with station-
ary massive ions may be written(

∂ fe

∂t

)
c

= ne Ze4 ln

8πε2
0m2

∂

∂v
·
(
v2I − vv

v3
· ∂ fe

∂v

)

Using this obtain an expression for the resistivity when the plasma is
perturbed by a time-dependent electric field E = E0 cosωt . To do this
write fe(v) = f0(v)+ f1(v) cos θ , where θ is the angle between E0 and v,
and show that

f1(v) = ieE0

m

∂ f0

∂v

[
ω + ine Ze4 ln

4πε2
0m2v3

]−1

From f1(v) write down the perturbed current density j1 and form 〈j1 ·E〉
to determine the average rate at which energy is absorbed by the plasma.
Balancing this against the rate of loss of field energy, νε0 E2/2 where ν
denotes the energy damping rate and assuming that in absorbing energy
the electron distribution remains Maxwellian, show that ν = (ω2

pe/ω
2)νei

where

νei = Znee4 ln

4
√

2πε2
0m1/2T 3/2

e

8.9 Plasmas are often heated by ion beams (injected as neutral atoms) with
energies in the 100 keV range, i.e. an order of magnitude greater than the
plasma thermal energy. Within this range the beam velocity V is inter-
mediate between ion and electron thermal velocities, i.e. Vi < V < Ve.
Collisions between beam ions and plasma ions and electrons slow the beam
through frictional drag and scattering off plasma ions deflects the beam.

Assuming that frictional drag dominates over velocity diffusion show
that the Fokker–Planck equation for the distribution of beam ions, fb(v, t),
takes the form

∂ fb

∂t
= A

∂

∂V
·
[

V
V 3

(
1 + V 3

V 3
c

)
fb

]
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where A = Z Z2
bnee4 ln/4πε2

0m imb and Vc = (3
√
π Z/2)1/3

×(T 3
e /mem2

i )
1/6.

8.10 Can you suggest why, in the relaxation of a bi-Maxwellian distribution
function, the oblate case (ε > 1) is less sensitive than the prolate case
(ε < 1) to the fact that the distribution does not remain bi-Maxwellian?
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Plasma radiation

9.1 Introduction

We know from classical electrodynamics that accelerated charged particles are
sources of electromagnetic radiation. Particles accelerated in electric or mag-
netic fields radiate with distinct characteristics. Electric micro-fields present in the
plasma result in bremsstrahlung emission by plasma electrons. External radiation
fields interacting with the plasma give rise to scattered radiation. Charged particles
moving in magnetic fields emit cyclotron or synchrotron radiation, depending on
the energy range of the particles.

The interaction of radiation with plasmas in all its aspects – emission, absorp-
tion, scattering and transport – is a key to understanding many effects in both
laboratory and natural plasmas. Laboratory plasmas in particular do not radiate as
black bodies so that an integrated treatment of emission, absorption and transport
of radiation is usually needed. Core plasma parameters such as electron and ion
temperatures and densities as well as plasma electric and magnetic fields may
all be determined spectroscopically, in the most general sense of the term. Rather
arbitrarily we shall confine our discussion to radiation from fully ionized plasmas
thus excluding line radiation on which many diagnostic procedures are based. To
some extent alternative spectroscopic techniques, in particular light scattering, have
replaced if not entirely supplanted measurements of line radiation as preferred
diagnostics of some key parameters in fusion plasmas (see Hutchinson (1988)).
In the course of this chapter we shall outline the basis of some of these diagnostics,
notably those that rely on bremsstrahlung and cyclotron radiation as well as those
involving light scattering. We shall limit our discussion of radiation to plasmas in
thermal equilibrium, with few exceptions. Non-thermal emission, while an impor-
tant issue in practice, is in many instances still relatively poorly understood.

324
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9.2 Electrodynamics of radiation fields

We begin with a statement of the results of Maxwellian electrodynamics essential
to an understanding of radiation fields. Details of the derivations leading to these
results are included in Exercise 9.1. The potentials A and φ are determined by[

∇2 − 1

c2

∂2

∂t2

]
A =−µ0 j

[
∇2 − 1

c2

∂2

∂t2

]
φ = − q

ε0




(9.1)

with specified current and charge sources together with the Lorentz gauge condi-
tion

∇ · A + 1

c2

∂φ

∂t
= 0 (9.2)

The solutions to (9.1) are expressed in terms of the retarded potentials:

A(r, t) = µ0

4π

∫
[j(r′, t ′)]t ′=t−|r−r′|/c

|r − r′| dr′

φ(r, t) = 1

4πε0

∫
[q(r′, t ′)]t ′=t−|r−r′|/c

|r − r′| dr′




(9.3)

Consider now a source consisting of a single particle of charge e moving arbitrarily
with velocity ṙ0(t) at a point r0(t). Then

j(r, t) = eṙ0(t)δ(r − r0(t)) q(r, t) = eδ(r − r0(t)) (9.4)

Substituting in (9.3) we find

A(r, t) = µ0

4π

[
evc

cR − v · R

]
t ′=t−R(t ′)/c

(9.5)

φ(r, t) = 1

4πε0

[
ec

cR − v · R

]
t ′=t−R(t ′)/c

(9.6)

where R(t ′) = |r − r0(t ′)| and v(t ′) = ṙ0(t ′). These expressions are the Liénard–
Wiechert potentials. Using the retarded potentials the electric field E(r, t) may be
expressed in a form due to Feynman:

E(r, t) = e

4πε0

[
n
R2

+ R

c

d

dt

( n
R2

)
+ 1

c2

d2n
dt2

]
ret

(9.7)

where n(t ′) is the unit vector from the source to the field point in Fig. 9.1 and
ret denotes that the expression within the square brackets must be evaluated at the
retarded time t ′ = t − R(t ′)/c. The first term in (9.7) represents the Coulomb
field of the charge e at its retarded position. The second is a correction to the
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Fig. 9.1. Source–observer geometry for a radiating charged particle.

retarded Coulomb field, being the product of the rate of change of this field and the
retardation delay time R/c. Thus the first and the second terms together correspond
to the retarded Coulomb field advanced in time by R/c, namely to the observer’s
time t . In other words, for fields varying slowly enough these two terms represent
the instantaneous Coulomb field of the charge. The final term, the second time
derivative of the unit vector from the retarded position of the charge to the observer,
contains the radiation electric field Erad ∝ R−1, i.e.

Erad(r, t) = e

4πε0

[
n × {(n − βββ)× β̇ββ}

cg3 R

]
ret

(9.8)

where g = (1 − n · βββ). The total electric field is

E(r, t) = e

4πε0

[
(1 − β2)(n − βββ)

g3 R2

]
ret

+ Erad(r, t) (9.9)

9.2.1 Power radiated by an accelerated charge

Once the radiation field is known, we can construct the Poynting vector S and so
determine the instantaneous flux of energy (see Section 6.2)

S = E × H = cε0|Erad|2n (9.10)

with Erad given by (9.8). Thus the power P , radiated per unit solid angle �, is

dP(t)

d�
= (S · n)R2 (9.11)
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Fig. 9.2. Polar diagram of the instantaneous power radiated by an accelerated charged
particle; θmax denotes the angle at which peak power is radiated.

where

S · n = e2

16π2ε0c

[
|n × {(n − βββ)× β̇ββ}|2

g6 R2

]
ret

(9.12)

Note that (dP(t)/d�) d� denotes the radiated power measured by the observer at
time t due to emission by the charge at time t ′. It is often useful to consider power
as a function of the retarded time t ′. Then

dP(t ′)
d�

= (S · n)R2 dt

dt ′ = g(S · n)R2 = e2

16π2ε0c

|n × {(n − βββ)× β̇ββ}|2
g5

(9.13)

Relativistic effects appear both in the numerator and, through g, in the denominator.
In the ultra-relativistic limit (β → 1) the effect of the denominator is dominant
in determining the radiation pattern; the dipole distribution familiar from the non-
relativistic limit deforms with the lobes inclined increasingly forward as in Fig. 9.2.
In the non-relativistic limit g → 1 and we recover the dipole distribution

dP

d�
= e2β̇2

16π2ε0c
sin2 θ (9.14)

where θ is the angle between β̇ββ and n.
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Larmor’s formula for the power radiated in all directions follows on integrating
over solid angle, i.e.

P =
∫

dP

d�
d� = e2v̇2

6πε0c3
(9.15)

The corresponding relativistic expression for the radiated power may be found by
replacing (9.15) by its covariant form, giving

P = e2

6πε0m2c3

[
dpµ
dτ

dpµ

dτ

]
= e2

6πε0c

[(β̇ββ)2 − (βββ × β̇ββ)2]

(1 − β2)3
(9.16)

Much of our discussion will focus on the distinct characteristics of radiation from
particles accelerated in the plasma micro-electric fields and in any magnetic fields
present. Where plasmas are subject to external electromagnetic fields the incident
radiation is scattered, with the scattering governed by the Thomson cross-section

σT = 8π

3
r2

e (9.17)

where the classical electron radius re = (e2/4πε0mc2).

9.2.2 Frequency spectrum of radiation from an accelerated charge

We consider next how the radiated energy is distributed in frequency. Since the
spectrum is represented in terms of frequencies at a detector it is natural to revert
to using time t (the observer’s time). Then

dP(t)

d�
= e2

16π2ε0c

[
|n × {(n − βββ)× β̇ββ}|2

g6

]
ret

≡ |a(t)|2 (9.18)

The energy radiated per unit solid angle dW/d� is found by integrating (9.18) over
time, giving

dW

d�
=
∫ ∞

−∞
|a(t)|2 dt (9.19)

Introducing the Fourier transform of a(t)

a(ω) = 1√
(2π)

∫ ∞

−∞
a(t)eiωt dt (9.20)

and using Parseval’s theorem allows us to represent the energy radiated per unit
solid angle as

dW

d�
=
∫ ∞

−∞
|a(ω)|2 dω (9.21)
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Thus

dW

d�
=
∫ ∞

0
[|a(ω)|2 + |a(−ω)|2] dω = 2

∫ ∞

0
|a(ω)|2 dω (9.22)

The energy radiated per unit solid angle per unit angular frequency interval is then

d2W

d� dω
= 2|a(ω)2| (9.23)

Finding a(ω) from (9.20) is simplified if we change the variable of integration from
t to t ′, so removing the evaluation of the term in square brackets at the retarded
time; then

a(ω) =
(

e2

32π3ε0c

)1/2∫ ∞

−∞
exp

{
iω

(
t ′ + R(t ′)

c

)}[
n × {(n − βββ)× β̇ββ}

g2

]
dt ′

(9.24)
Since we wish to determine the spectrum in the radiation zone (r 
 r0 in Fig. 9.1),
n is effectively time-independent and R(t ′) 	 r − n · r0(t ′) so that

d2W (ω, n)
d� dω

= e2

16π3ε0c

∣∣∣∣∣
∫ ∞

−∞
exp

{
iω

(
t ′ − n · r0(t ′)

c

)}[
n × {(n − βββ)× β̇ββ}

g2

]
dt ′
∣∣∣∣∣
2

(9.25)

Thus the energy radiated per unit solid angle per unit frequency interval is deter-
mined as a function of ω and n once r0(t ′) is prescribed.

For purposes of calculation, we cast (9.25) in a slightly different form. Using the
representation (see Exercise 9.1)

n × {(n − βββ)× β̇ββ}
g2

= d

dt ′

[
n × (n × βββ)

g

]

we integrate (9.25) by parts to find, in the radiation zone,

d2W (ω,n)
d� dω

= e2ω2

16π3ε0c

∣∣∣∣
∫ ∞

−∞
exp

{
iω

(
t ′ − n · r0(t ′)

c

)}
[n × (n × βββ)]dt ′

∣∣∣∣
2

(9.26)

The results summarized in this section provide a basis for the formalism needed
to describe radiation emitted by charged particles. Much of the rest of the chapter
is taken up with the characteristics of emission from particles moving in particular
fields. Emission is of course only part of the story. Plasmas in thermal equilib-
rium that emit radiation absorb it as well and details of absorption mechanisms
are crucial for the radiative heating of plasmas as we shall see in Chapter 11.
Before discussing the emission of radiation we first summarize some ideas central
to radiation transport in plasmas.
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9.3 Radiation transport in a plasma

Fig. 9.3. Pencil of radiation refracted across an element of plasma.

The general problem of radiation transport in plasmas is complicated but fortu-
nately for our purposes does not need to be discussed in detail. For simplicity
we ignore scattering and take account of emission and absorption in the transport
equation. This is strictly valid only under conditions of local thermodynamic equi-
librium (LTE), a concept to be introduced later in this section.

The equation of radiative transfer can be thought of as an expression of energy
conservation in terms of geometric optics. If Fω denotes the spectral density of the
radiation flux then, by energy conservation in steady state,

∇ · Fω = 0 (9.27)

Note that Fω has dimensions of power per unit area per angular frequency interval.
The principal assumption in geometric optics is that the properties of the medium
vary slowly with position; that is, the scale length of variations is very much greater
than the wavelength of radiation in the medium. In this approximation, one may
picture the radiation being transported along rays. Figure 9.3 shows an element of
plasma of cross-section dA, thickness ds and n is the unit normal outwards from
the surface. The net radiation flux across this element is

dFω · n = dFω cos θ = Iω(s) cos θ d� (9.28)

Iω(s) is the intensity of the radiation and s denotes displacement along the ray. Its
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importance in radiation transport is due to the fact that it can be measured more or
less directly. Iω(s) is defined by

dPω(s) = Iω(s) cos θ d� dω dA

where dPω is the time-averaged power in the spectral range dω crossing an area dA
within a cone of solid angle d�. Iω is expressed in units of watts per square metre
per steradian per unit angular frequency. In general, the intensity is a function both
of direction and position in the medium. When it is a function of position alone,
the radiation is said to be isotropic.

Suppose the plasma through which the radiation is passing is loss-free and
isotropic but slightly inhomogeneous so that a ray, on passing through the element
of plasma shown in Fig. 9.3, suffers bending. Then, by energy conservation,

(Iω + dIω) cos θ2 d�2 dω dA − Iω cos θ1 d�1 dω dA = 0 (9.29)

supposing no reflection of energy at the interface takes place. Now from Snell’s
law, n sin θ is constant (where n is the refractive index) along the ray. Then, since

d�2

d�1
= sin θ2 dθ2

sin θ1 dθ1
= sin θ2

sin θ1

n1 cos θ1

n2 cos θ2
=
(

n1

n2

)2 cos θ1

cos θ2

(9.29) leads to

Iω2

(
n1

n2

)2

cos θ1 d�1 = Iω1 cos θ1 d�1

so that
Iω
n2

= const. (9.30)

along a ray path in a slowly varying inhomogeneous, isotropic, transparent
medium. At frequencies much greater than the plasma frequency, n2 	 1 and (9.30)
simplifies to Iω = const. along a ray path. The result for an anisotropic plasma is
more complicated since Snell’s law is no longer obeyed in general but holds only
for waves propagating in certain directions relative to the magnetic field.

Next we relax the requirement that the plasma be both source-free and loss-free.
Within the geometrical optics representation we introduce absorption and emission
terms on the right-hand side of (9.27). Let αω be the absorption coefficient per
unit path length in the plasma, so that a radiative flux Iω dA d� suffers a loss
αω Iω dA d� ds in travelling a distance ds. Similarly we introduce an emission co-
efficient εω defined so that εω dA d� ds is the emission from the elemental volume
into solid angle d� in the direction of the ray. Then,

dIω
ds

= ∂ Iω
∂s

− αω Iω + εω (9.31)
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Now, ∂ Iω/∂s is the rate of change of Iω due to the change in refractive index along
a ray path; from (9.30)

∂ Iω
∂s

= 2Iω
n

dn

ds

so that

n2 d

ds

(
Iω
n2

)
= εω − αω Iω (9.32)

This is the radiative transport equation.
To solve the transfer equation, we introduce a source function

Sω = 1

n2

εω

αω
(9.33)

and define an optical depth τ

τ =
∫ τ

dτ = −
∫ s

αω ds (9.34)

in which the minus sign denotes that the optical depth is measured back into the
plasma along the ray path. Then (9.32) reads

d

dτ

(
Iω
n2

)
= Iω

n2
− Sω (9.35)

Integrating along the ray path in the plasma between points A and B one has,

Iω(A)

n2(A)
e−τ(A) = Iω(B)

n2(B)
e−τ(B) +

∫ τ(B)

τ (A)
Sω(τ )e

−τ dτ (9.36)

In practice it may be permissible to ignore curvature of the ray path where changes
in refractivity are negligible. Where A, B are points on a plasma–vacuum boundary
as in Fig. 9.4 then τ(A) = 0, τ(B) = τ0, the total optical depth of the plasma, and
n(A) = 1 = n(B). Thus, neglecting reflection at the boundaries, the emergent
intensity is

I em
ω = I inc

ω e−τ0 +
∫ τ0

0
Sω(τ )e

−τ dτ (9.37)

The first term on the right-hand side takes account of absorption of the incident
radiation while the second represents contributions from sources within the plasma,
again allowing for absorption of radiation in transit from its origin to the point A.
When I inc

ω = 0,

I em
ω =

∫ τ0

0
Sω(τ )e

−τ dτ (9.38)

Two important limiting cases of this result correspond to τ0 � 1, when the plasma
is said to be optically thin and the opposite limit τ0 
 1, when it is optically
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Fig. 9.4. Ray path through the plasma.

thick. In the optically thin limit, absorption along a ray path is negligible so that
the emergent intensity is simply the sum of contributions along the ray, i.e.,

I em
ω 	

∫ sA

sB

εω(s)ds (9.39)

In the optically thick limit τ0 → ∞ so that after integrating (9.38) by parts

I em
ω = εω(sA)

αω(sA)
(9.40)

In other words the intensity affords a direct measure of the source function. Be-
tween these two limits one has to solve the radiative transfer equation to determine
the intensity of the radiation observed at a detector.

A medium in thermal equilibrium that is perfectly absorbing emits radiation that
is Planckian, i.e. the intensity I (ω) = B(ω) where

B(ω) = h̄ω3

8π3c2
[exp(h̄ω/kBT )− 1]−1 (9.41)

is the black body intensity (for a single polarization) and h̄ = h/2π where h is
Planck’s constant. In the classical limit (9.41) reduces to the Rayleigh–Jeans form

B(ω) = ω2kBT

8π3c2
(9.42)
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Then from (9.40) we find

εω

αω
= ω2kBTr

8π3c2
(9.43)

which defines a radiation temperature Tr.
By and large radiation emitted by laboratory plasmas, unlike that from stellar

sources, does not correspond to a black body spectrum. We have to abandon the
notion of global thermal equilibrium for something less complete, local thermody-
namic equilibrium (LTE), a concept that lends itself to about as many definitions as
it finds application! Broadly speaking, homogeneous plasmas can be assumed to be
in an LTE state when collision processes are dominant. The radiation field is locally
Planckian with temperature Te. Only under LTE conditions is the source function
εω/αω = B(ω). In reality of course laboratory plasmas are rarely homogeneous
and this imposes additional restrictions on the validity of LTE.

It is still possible to describe the radiation field locally by a temperature Te

even when the temperature is globally non-uniform. This means that the region
concerned has to be sufficiently local for the temperature to be considered uniform
while at the same time extensive enough for thermodynamics to be valid. The LTE
approximation breaks down when the source function is no longer a local function
of electron temperature but depends on the radiative flux from other regions of the
plasma.

9.4 Plasma bremsstrahlung

We turn next to the principal sources of radiation from fully ionized plasmas,
bremsstrahlung and, with magnetic fields present, cyclotron or synchrotron ra-
diation. We shall deal with these separately, since the spectral characteristics in
each case are quite distinct. The spectral range of bremsstrahlung is very wide,
extending from just above the plasma frequency into the X-ray continuum for
typical plasma temperatures. By contrast the cyclotron spectrum is characterized
by line emission at low harmonics of the Larmor frequency. Synchrotron spectra
from relativistic electrons display distinctive characteristics as we shall see later
on. Moreover, whereas cyclotron and synchrotron radiation can be dealt with
classically, the dynamics being treated relativistically in the case of synchrotron
radiation, bremsstrahlung from plasmas has to be interpreted quantum mechan-
ically, though not usually relativistically. Bremsstrahlung results from electrons
undergoing transitions between two states of the continuum in the field of an
ion (or atom). Oppenheimer (1970) has described bremsstrahlung graphically as
the shaking off of quanta from the field of an electron that suffers a sudden
jerk.
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In place of a full quantum mechanical treatment we opt instead for a semi-
classical model of bremsstrahlung which turns out to be adequate for most plasmas.
Classically we can think of bremsstrahlung in terms of the emisssion of radiation
by an electron undergoing acceleration in the field of a positive ion. The classical
emission spectrum can then be massaged to agree with the quantum mechanical
spectrum by multiplying by a correction factor, the Gaunt factor.

To see what is involved let us make an estimate of plasma bremsstrahlung from
a simple model in which an electron moves in the Coulomb field of a single
stationary ion of charge Ze. Then

|v̇| = Ze2

4πε0mr2

and substituting in Larmor’s formula (9.15), the power radiated by the electron is
given by

Pe = e2

6πε0c3

(
Ze2

4πε0mr2

)2

(9.44)

If we take the spatial distribution of the plasma electrons about the ion to be uni-
form, then the contribution to the bremsstrahlung from all electrons in encounters
with this test ion is found by summing the individual contributions to give,

P = 8π Z 2e6ne

3(4πε0)3m2c3

∫ ∞

rmin

dr

r2
= 8π Z2e6ne

3(4πε0)3m2c3rmin

The cut-off at r = rmin is needed to avoid divergence. A value for rmin may be
chosen in a number of ways and we shall see later that plasma bremsstrahlung is not
sensitive to this choice. For present purposes we take rmin 	 λdeB, the de Broglie
wavelength, the distance over which an electron may no longer be regarded as a
classical particle. For a thermal electron

λdeB ∼ h̄/(mkBTe)
1/2

where Te is the electron temperature. Thus

P 	 8π Z2e6ne

3(4πε0)3mc3h̄

(
kBTe

m

)1
2

If ni denotes the ion density, the total bremsstrahlung power radiated per unit
volume of plasma, Pff, is then

Pff = 8π

3

Z2neni

mc3h̄

(
e2

4πε0

)3 (
kBTe

m

)1
2

= 5.34 × 10−37 Z2neniT
1/2

e (keV)W m−3

(9.45)
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We see that the power radiated as bremsstrahlung is proportional to the product
of electron and ion densities and to Z 2. Thus any high Z impurities present will
contribute bremsstrahlung losses disproportionate to their concentrations. Note that
since electron–electron collisions do not alter the total electron momentum they
make no contribution to bremsstrahlung in the dipole approximation.

9.4.1 Plasma bremsstrahlung spectrum: classical picture

The exact classical treatment of an electron moving in the Coulomb field of an
ion is a standard problem in electrodynamics. Provided the energy radiated as
bremsstrahlung is a negligibly small fraction of the electron energy (we treat the ion
as stationary) the electron orbit is hyperbolic and the power spectrum dP(ω)/dω
from a test electron colliding with plasma ions of density ni may be shown to
be

dP(ω)

dω
= 16π

3
√

3

Z2ni

m2c3

(
e2

4πε0

)3
1

v
G(ωb0/v) (9.46)

where b0 = Ze2/4πε0mv2 is the impact parameter for 90◦ scattering, v the incident
velocity of the electron and G(ωb0/v) a dimensionless factor, known as the Gaunt
factor, which varies only weakly with ω.

Most of the bremsstrahlung is emitted at peak electron acceleration, i.e. at the
distance of closest approach to the ion. Collisions described by a small impact
parameter produce hard photons; less energetic photons come from distant encoun-
ters, with correspondingly large impact parameters. Denoting the impact parameter
by b, collisions producing hard photons correspond to b � b0 and the electron orbit
is approximately parabolic. In the opposite limit b 
 b0, the electron trajectory is
more or less linear and in reality it is only in this limit that a classical picture of
bremsstrahlung is justified. For an electron following the linear trajectory shown
in Fig. 9.5, r2(t) = (vt)2 + b2. The components of the acceleration normal and
parallel to the trajectory are,

v̇⊥(t) = Ze2

4πε0m

b

[(vt)2 + b2]3/2
v̇‖(t) = Ze2

4πε0m

vt

[(vt)2 + b2]3/2

Integrating (9.26) over the solid angle allows us to express the energy radiated per
unit frequency interval in the non-relativistic limit as

dW (ω)

dω
= e2

6π2ε0c3

∣∣∣∣
∫ ∞

−∞
v̇(t)eiωt dt

∣∣∣∣
2
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Fig. 9.5. Linear electron trajectory.

= e2

6π2ε0c3

(
Ze2

4πε0m

)2 ∣∣∣∣
∫ ∞

−∞

be⊥ + vte‖
[(vt)2 + b2]3/2

eiωt dt

∣∣∣∣
2

= 2e2ω2

3π2ε0c3

(
Ze2

4πε0mv2

)2 [
K 2

1

(
ωb

v

)
+ K 2

0

(
ωb

v

)]
(9.47)

where K0 and K1 are modified Bessel functions of the second kind (see Exer-
cise 9.5).

The bremsstrahlung emitted by the test electron from distant encounters with all
the plasma ions is then found by integrating over a suitably defined range of the
impact parameter. The number of encounters with ions per second having impact
parameters between b and b +db is 2πnivb db, so that the power radiated (per unit
frequency interval) by a single electron is

dP(ω)

dω
= 2π

∫ bmax

bmin

dW (ω)

dω
nivb db

Choices have to be made for the limits to the impact parameter. For consistency
with the approximation by a linear trajectory we identify bmin with b0 and take
bmax = v/ω corresponding to the width of the bremsstrahlung spectrum. The
bremsstrahlung from all plasma electrons is found by integrating over the electron
distribution function. Assuming Maxwellian electrons we can carry out the integra-
tions over impact parameter and electron velocity to determine the bremsstrahlung
emission coefficient. The emission coefficient εω is the power radiated per unit
volume per unit solid angle per unit (angular) frequency and, in the low frequency
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limit, is given by

εω = 8

3
√

3

Z2neni

m2c3

(
e2

4πε0

)3 (
m

2πkBTe

)1
2

ḡ (9.48)

and ḡ is the Maxwellian-averaged Gaunt factor. In our case

ḡ(ω, Te) =
√

3

π
ln

∣∣∣∣∣2m

ζω

4πε0

Ze2

(
2kBTe

ζm

) 3
2

∣∣∣∣∣ (9.49)

where ln ζ = 0.577 is Euler’s constant and the factor (2/ζ ) 	 1.12 in the argument
of the logarithm has been included to make ḡ in (9.49) agree with the exact low
frequency limit determined from (9.46). The factor

√
3/π is introduced into (9.49)

to conform with the conventional definition of the Gaunt factor in the quantum
mechanical treatment.

9.4.2 Plasma bremsstrahlung spectrum: quantum mechanical picture

While the classical description of bremsstrahlung is useful in the low frequency
range, at high frequencies a quantum mechanical formulation is needed. For
present purposes it is enough to treat the electron as a wave packet. In the same
spirit, the quantum nature of radiation is allowed for through the photon limit. In
the simple model used at the start of Section 9.4 to illustrate the dependence of
bremsstrahlung on plasma parameters we chose the de Broglie wavelength as a
cut-off impact parameter. This choice is dictated by the Uncertainty Principle since
an electron with momentum p can be determined only to within an uncertainty
�x ∼ h̄/p ∼ λdeB, the de Broglie wavelength. So for impact parameters b ≤ �x
we need a quantal picture of bremsstrahlung.

In Section 9.4.1 we found the plasma bremsstrahlung emissivity by averaging
over a Maxwellian distribution function. Here we have to allow for the fact that
there can be no bremsstrahlung emission at frequencies above the photon limit,
ω = mv2/2h̄; in other words a photon of energy h̄ω can only be emitted by an
electron with energy at least h̄ω. Consequently averaging the Gaunt factor G(ω, v)
over a Maxwellian distribution gives

ḡ(ω, Te) =
∫ ∞

0
g(ω, v) f (v)v dv =

∫ ∞

0
g(ω, E)e−E/kBTe d(E/kBTe) (9.50)

and with proper allowance made for the photon limit, we require g(ω, E) = 0 for
E < h̄ω. Writing E = E ′ + h̄ω, and normalizing so that ε = E/kBTe we find from
(9.50)

ḡ(ω, Te) =
[∫ ∞

0
g

(
ω, ε′ + h̄ω

kBTe

)
e−ε′

dε′
]

e−h̄ω/kBTe
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It is customary to show the exponential dependence on electron temperature explic-
itly in the expression for the emission coefficient so that the Maxwellian-averaged
Gaunt factor is then defined as

ḡ(ω, Te) =
∫ ∞

0
g

(
ω, ε′ + h̄ω

kBTe

)
e−ε′

dε′ (9.51)

Simple analytic representations can be found in limiting cases. At low frequencies
and high electron temperatures (but not so high that electron thermal velocities
become relativistic)

ḡ(ω, Te) =
√

3

π
ln

∣∣∣∣4ζ kBTe

h̄ω

∣∣∣∣ (9.52)

At high frequencies a Born (plane wave) approximation (equivalent to represent-
ing the electron trajectory as a straight line) is commonly used. A more general
expression has been given by Elwert (see Griem (1964)). The Born approximation
results in a Gaunt factor

ḡB(ω, Te) =
√

3

π
K0

(
h̄ω

2kBTe

)
eh̄ω/2kBTe (9.53)

This reduces to (9.52) in the low frequency limit.
The bremsstrahlung emission coefficient is represented in terms of the Gaunt

factor (in whatever approximation) as

εω(Te) = 8

3
√

3

Z2neni

m2c3

(
e2

4πε0

)3 (
m

2πkBTe

)1/2

ḡ(ω, Te)e
−h̄ω/kBTe (9.54)

The Gaunt factor is a relatively slowly varying function of h̄ω/kBTe over a
wide range of parameters which means that the dependence of bremsstrahlung
emission on frequency and temperature is largely governed by the factor
(m/2πkBTe)

1/2 exp(−h̄ω/kBTe) in (9.54). For laboratory plasmas with electron
temperatures in the keV range, the bremsstrahlung spectrum extends into the X-ray
region of the spectrum.

9.4.3 Recombination radiation

Although we have excluded line radiation from our discussion of plasma radiation
we need to consider briefly free–bound transitions leading to recombination radia-
tion. The final state of the electron is now a bound state of the atom (or ion, if the ion
was initially multiply ionized). The kinetic energy of the electron together with the
difference in energy between the final quantum state n and the ionization energy
of the atom or ion now appears as photon energy. This event involving electron
capture is known as radiative recombination and the emission as recombination
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radiation. In certain circumstances, recombination radiation may dominate over
bremsstrahlung.

It is again useful to follow a semi-classical argument to arrive at an emission
coefficient for recombination radiation. Essentially one takes the corresponding
bremsstrahlung coefficient and applies the correspondence principle to introduce
the bound final state in place of a continuum level. The correspondence principle
is essentially a statement that quantum mechanical results must reduce to their
classical limits when the density of quantum states is high. In that event we can
think of a free–bound transition in terms of bremsstrahlung formalism adjusted to
allow for the contribution to the photon energy of the additional energy released
through recombination. The free–bound spectrum consists of lines corresponding
to h̄ωn = mv2/2 + Z 2 Ry/n2 where Ry is the Rydberg constant. The correspon-
dence principle attributes the power radiated classically to the line spectrum as
opposed to the continuum in the case of bremsstrahlung. The energy correspond-
ing to a transition from the continuum to a quantum state n may be shown to
be

h̄�ωn 	 2Z 2 Ry

n3
(9.55)

for large n (see Exercise 9.5).
The energy emitted in a transition to a quantum level n is then written

(dW/dω)class × �ωn where (dW/dω)class is the same as the expression used to
calculate the bremsstrahlung emission. As in that case we can then proceed to
integrate over the impact parameter. The power emitted as recombination radiation
to level n by the plasma electrons is found by integrating over the distribution
function. For a Maxwellian distribution this amounts to evaluating∫ ∞

0
exp

(
− E

kBTe

)
δ

[
E −

(
h̄ω − Z2 Ry

n2

)]
dE

The emission coefficient for recombination radiation to level n for a thermal plasma
is then

εn(ω, Te) = 8

3
√

3

Z2neni

m2c3

(
e2

4πε0

)3 (
m

2πkBTe

)1/2

exp(−h̄ω/kBTe)

×
[

Z2 Ry

kBTe

2gn

n3
exp(Z2 Ry/n2kBTe)

]
(9.56)

This is identical to the expression found for bremsstrahlung emissivity (9.54) with
ḡ(ω, Te) replaced by the factor in the square bracket provided h̄ω > Z2 Ry/n2; if
this is not satisfied the Gaunt factor gn ≡ 0. In other words recombination radiation
only contributes to the plasma emissivity for photon energies greater than the
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Fig. 9.6. Plasma emissivity showing contributions from recombination radiation super-
posed on the bremsstrahlung spectrum as a function of photon frequency (after Galanti
and Peacock (1975)).

ionization energy of the quantum state involved. This is seen in the characteristic
step at the recombination edge, h̄ω = Z2 Ry/n2 (see Fig. 9.6).

9.4.4 Inverse bremsstrahlung: free–free absorption

The process inverse to bremsstrahlung, free–free absorption, occurs when a photon
is absorbed by an electron in the continuum. Its macroscopic equivalent is the
collisional damping of electromagnetic waves (see Exercise 6.4). For a plasma in
local thermal equlibrium, having found the bremsstrahlung emission (9.54), we
may then appeal to Kirchhoff’s law to find the free–free absorption coefficient αω.
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In the Rayleigh–Jeans limit this gives

αω(Te) = 64π4

3
√

3

Z2neni

m3cω2

(
e2

4πε0

)3 (
m

2πkBTe

)3/2

ḡ(ω, Te) (9.57)

where ḡ(ω, Te) is defined by (9.49). It is instructive to note that the parametric
dependences in this expression for inverse bremsstrahlung may be retrieved from
a quite different approach. If we return to the result of Exercise 6.4 expressing the
collisional damping of electromagnetic waves and use this to obtain the absorption
coefficient we recover (9.57) with the Coulomb logarithm in place of the Maxwell-
averaged Gaunt factor, a difference that reflects the distinction between these sepa-
rate approaches. Whereas inverse bremsstrahlung is identified with incoherent ab-
sorption of photons by thermal electrons, the result in Exercise 6.4 is macroscopic
in that it derives from a transport coefficient, namely the plasma conductivity. At
the macroscopic level, electron momentum is driven by an electromagnetic field
before being dissipated by means of collisions with ions.

Absorption of radiation by inverse bremsstrahlung as expressed by (9.57) is most
effective at high densities, low electron temperature and for low frequencies. The
mechanism is important for the efficient absorption of laser light by plasmas. We
expect absorption to be strongest in the region of the critical density nc, since this is
the highest density to which incident light can penetrate. In the neighbourhood of
the critical density Zneni ∼ n2

c = (mε0/e2)2ω4
L, where ωL denotes the frequency

of the laser light, so that free–free absorption is sensitive to the wavelength of the
incident laser light.

9.4.5 Plasma corrections to bremsstrahlung

Up to now we have ignored plasma effects in discussing bremsstrahlung emission
and its transport through the plasma. To deal with the second issue we need to
refer to our discussion of radiative transport in Section 9.3 where plasma dielectric
effects were allowed for. For an isotropic plasma the emission coefficient (9.48) is
valid only for frequencies ω 
 ωp and otherwise needs to be corrected when the
refractive index is no longer approximately unity. This in turn amounts to aban-
doning the particle model for a full kinetic theory formulation of wave propagation
which is beyond the scope of this discussion.

The bremsstrahlung emission described by (9.48) was determined on the basis of
binary encounters between electrons and ions. However as we saw in Section 8.4,
collisions in plasmas are predominantly many-body rather than binary. For fre-
quencies around ωp there is time for an electron cloud to screen the positive ion
so that an electron no longer feels a simple Coulomb field. This suggests that
the cut-off in the Gaunt factor introduced in Section 9.4.1 should be taken as
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bmax ∼ λD, the Debye length. However as we have seen already, bremsstrahlung
emissivity is not especially sensitive to the choices made for the impact parameter
cut-off.

For frequencies close to ωp it is no longer correct to neglect correlations between
electrons. Dawson and Oberman (1962) showed that the correction to the Gaunt
factor in the region ω 	 ωp due to Langmuir wave generation was insignificant
for a plasma in thermal equilibrium. However for non-thermal plasmas, emission
in the neighbourhood of the plasma frequency may be many orders greater than
thermal levels. A brief account of one aspect of radiation by Langmuir waves is
given in Section 11.6.

9.4.6 Bremsstrahlung as plasma diagnostic

Bremsstrahlung emissivity through its dependence on electron temperature, plasma
density and atomic number clearly has potential as a plasma diagnostic. In the first
place the exponential dependence in (9.54) means that for h̄ω ≥ kBTe the slope
of a log-linear plot of the bremsstrahlung emissivity provides a direct measure
of Te. Next, the strong dependence of the emission on the atomic number of
the plasma ions in principle allows the impurity content in a hydrogen plasma
to be determined. Moreover, if the plasma electron temperature is known in-
dependently, the level of bremsstrahlung could be used to estimate the plasma
density.

In practice the picture is less clear. Even for thermal plasmas, for which
bremsstrahlung losses do not result in significant modification of the distribution
function, unfolding the electron temperature from the bremsstrahlung spectrum is
not as straightforward as might first appear. Limited spectral resolution may result
in the true slope being masked by recombination edge effects or suffering distortion
from discrete lines in the spectrum. Bremsstrahlung from a tokamak plasma with
a modest content of high Z impurities such as nickel and molybdenum, will be
affected by contributions from these impurities.

Moreover, the assumption of a Maxwellian or near-Maxwellian electron dis-
tribution may not be justified. Since the temperature is deduced from the X-
ray spectrum in the region h̄ω/kBTe > 1, any non-Maxwellian component will
lead to errors in the measurements. Non-Maxwellian electron distributions in
both space and laboratory plasmas are commonplace. It may happen for exam-
ple that a Maxwellian distribution that describes the bulk electrons is modified
by a high-energy tail of suprathermal electrons. Even though the population of
suprathermals is only a fraction of that of the bulk electrons, they may nevertheless
exercise an influence on the overall electron dynamics disproportionate to their
numbers.
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9.5 Electron cyclotron radiation

We consider next radiation by an electron moving in a uniform, static magnetic
field. For electron energies no more than moderately relativistic, radiation is emit-
ted principally at the cyclotron frequency with contributions at low harmonics
of this frequency and is generally referred to as cyclotron radiation. Emission
from highly relativistic electrons differs in that higher harmonics now contribute
significantly to the spectrum and the harmonic structure is smoothed on account of
harmonic overlap. In this limit the emission is referred to as synchrotron radiation.
We discuss the two limits separately.

In solving for the motion of a charged particle in a static uniform magnetic field
B0 in Chapter 2 we neglected radiation, so that the total energy of the particle was
a constant of the motion. We shall assume – and later justify – that the energy is
effectively constant, that is, the energy radiated per complete orbit is negligible
compared with E = [m2c4 + p2c2]1/2, where m is the rest mass and p the electron
momentum. We saw from Section 2.2 that the solution to the Lorentz equation
corresponds to a helical trajectory, with the axis of the helix parallel to B0 as in
Fig. 9.7. If we now take the z-axis as the path of the guiding centre and set α = 0,
the electron velocity v and trajectory r0 are

v = x̂v⊥ cos�t − ŷv⊥ sin�t + ẑv‖
r0 = x̂(v⊥/�) sin�t + ŷ(v⊥/�) cos�t + ẑv‖t

}
(9.58)

where

� = eB0/γm = �0/γ (9.59)

is the relativistic Larmor frequency. Our task is then to use (9.58) in (9.26) to
calculate the power radiated by an electron per unit solid angle per unit frequency
interval. If we suppose the axes are oriented so that radiation is detected by an ob-
server in the Oxz plane then n = (sin θ, 0, cos θ). The steps involved are outlined
in Exercise 9.6.

The expression found for the cyclotron power radiated by an electron is then

d2 P

d� dω
= e2ω2

8π2ε0c

∞∑
l=1

[(
cos θ − β‖

sin θ

)2

J 2
l (x)+ β2

⊥ J ′2
l (x)

]

× δ(l�− ω[1 − β‖ cos θ ]) (9.60)

where x = (ω/�)β⊥ sin θ and the Jl denote Bessel functions of the first kind. The
spectrum of the emitted radiation consists of lines at frequencies

ωl = l�

1 − β‖ cos θ
= l�0(1 − β2

⊥ − β2
‖ )

1/2

1 − β‖ cos θ
(9.61)

The emission lines are shifted from the cyclotron resonances on two accounts, a
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Fig. 9.7. Source–observer geometry for electron radiating in a uniform magnetic field.

relativistic shift from the numerator and a Doppler shift from the denominator.
For weakly relativistic electron energies, the Doppler shift is dominant other than
for angles θ → π/2. A point to bear in mind is that (9.60) expresses the rate of
emission at the source; to obtain the power seen by an observer we have to multiply
(9.60) by (1 − β‖ cos θ)−1.

The total power Pl in a given harmonic line l follows on integrating over all
directions. This is best done by transforming to the guiding centre frame and then
using a Lorentz transformation to find the radiated power in the laboratory frame.
The procedure is outlined in Exercise 9.7, the result being

Pl = e2�2
0(1 − β2)

2πε0cβ⊥(1 − β2
‖ )3/2

×
[

lβ2
⊥ J ′

2l

(
2lβ⊥

(1 − β2
‖ )1/2

)
− l2(1 − β2)

∫ β⊥/(1−β2
‖ )

1/2

0
J2l(2lt) dt

]
(9.62)

This result has an interesting history and was first found by Schott (1912) determin-
ing the power radiated by a ring of n electrons. Schott’s results were subsequently
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rediscovered decades later in descriptions of synchrotron radiation from particle
accelerators.

The expression for Pl simplifies considerably in the weakly relativistic limit. We
shall see in the following section that provided lβ � 1, Pl+1/Pl ∼ β2

⊥ so that the
intensities of the harmonics fall off rapidly with increasing harmonic number so
that almost all of the radiation is emitted in the fundamental, or cyclotron emission
line, and in low (l = 2, 3, . . .) harmonics.

9.5.1 Plasma cyclotron emissivity

In the weakly relativistic limit electron cyclotron emission (ECE) has potential as a
diagnostic. To explore this we first need to find the plasma cyclotron emissivity by
averaging the power radiated over the electron distribution function, f (β⊥, β‖). On
the assumption that the electrons are uncorrelated, the plasma cyclotron emissivity
εl(ω), defined as the rate of emission of cyclotron radiation in the harmonic line l
per unit volume of plasma per unit solid angle, is given by

εl(ω) = 2πc3
∫

d2 P

d� dω
f (β⊥, β‖)β⊥ dβ⊥ dβ‖ (9.63)

with d2 P/d� dω defined by (9.60). In the weakly relativistic limit, with lβ � 1 and
using the small argument approximation for the Bessel function, Jl(x) ∼ (x/2)l/ l!
in (9.60), (9.63) reduces to

εl(ω, θ) = e2c2ω2

2πε0

l2l

[l!]2
(cos2 θ + 1) sin2(l−1) θ

×
∫ ∞

0

∫ ∞

−∞

(
β⊥
2

)2l+1

f (β⊥, β‖)δ(l�− ω[1 − β‖ cos θ ])dβ⊥ dβ‖ (9.64)

For a Maxwellian distribution function integration over velocity space gives

εl(ω, θ) = ne2l2�2

16π2ε0c

l2l

[l!]2
(cos2 θ + 1) sin2(l−1) θ

×
{(

kBTe

2mc2

)l ( mc2

2πkBTe

)1/2

(ωl cos θ)−1 exp

[
− mc2

2kBTe

(ω − ωl)
2

ω2
l cos2 θ

]}
(9.65)

where ωl is defined by (9.61). In contrast to bremsstrahlung, cyclotron radiation
appears as a line spectrum so that the question of line broadening is critical to
determining line profiles.

We see from this expression for the plasma cyclotron emissivity that the emission
is anisotropic, in that the observed intensity depends on the direction of the detector
relative to the source, and consists of a fundamental at the electron cyclotron
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frequency together with harmonics. The relative intensities of the harmonics de-
pend on electron temperature. The term in braces, the shape function, governs line
shapes with the line width �ω determined by Doppler broadening

�ω ∼ l�(2kBTe/mc2)1/2 cos θ

Thus by measuring the width of the cyclotron line or its harmonics we may de-
termine the electron temperature. Note that when cos θ < β, line widths will be
determined by the relativistic mass increase. The shape function for a relativisti-
cally broadened line is distinct from the Doppler line shape, being both narrower
and asymmetric. Other mechanisms can and do contribute to line broadening across
the range of plasma parameters. However, if we confine our interest to ECE from
fusion plasmas we may disregard radiation broadening due to loss of energy by an
electron as it radiates and collision broadening, since collisions contribute in only
a small way to line widths in hot plasmas.

9.5.2 ECE as tokamak diagnostic

When it comes to using ECE as a diagnostic for electron temperature in toka-
maks, other considerations come into play. Two in particular need to be taken
into account. The first concerns line broadening due to the spatially inhomoge-
neous magnetic field of a tokamak which may dominate Doppler and relativistic
broadening in determining the line width. Tokamak magnetic fields are determined
largely by the toroidal component Bt(R) ∝ R−1. The fact that this field is known
accurately means that emission at ω = l�(R) is characterized by good spatial
resolution. Thus the electron temperature profile can be determined. Normally only
the first few harmonic lines are used in contemporary tokamaks and these may be
optically thick or optically thin or somewhere in between. For optically thick lines
the temperature profile is determined directly (from (9.42)), i.e.

kBTe(R) = 8π3c2

l2�2(R0)

(
R

R0

)2

I

(
l R0�(R0)

R

)
(9.66)

A second consideration comes from the need to allow for aspects of wave
propagation in plasmas introduced in Chapters 6 and 7. Effects in inhomogeneous
and bounded plasmas will be discussed in Chapter 11. More particularly, a kinetic
theory formulation is needed to deal with absorption in hot plasmas. Moreover,
account needs to be taken of reflection at the walls and at the divertor so that in
practice a detailed picture of propagation has to be found using a toroidal ray-
tracing code.

In principle, ECE measurements using optically thin harmonics allow the plasma
density to be inferred once the temperature has been found from an optically thick
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harmonic measurement. This follows since the optical depth is a function both
of the temperature and density. However multiple reflection of the optically thin
radiation at the walls makes this less straightforward in practice than might at first
appear.

ECE offers further diagnostic potential through polarization measurements that
allow determination of the direction of the magnetic field inside the plasma at the
position at which the radiation is emitted. However, should the plasma density be
large enough to cause strong birefringence, the radiation, instead of retaining its
source polarization, reflects the polarization that characterizes the field point. If
that happens what we end up with is the direction of the magnetic field at the edge
of the plasma, rather than at the point of emission.

For tokamaks operating at higher temperatures, the use of second harmonic ECE
to measure the temperature profile suffers from harmonic overlap. As the temper-
ature increases, emission at higher harmonics contributes increasingly to the spec-
trum so that the weakly relativistic condition lβ � 1 may no longer be satisfied.
Higher harmonic contributions then change the characteristics of the spectrum, as
we shall find in the following section. Moreover, the presence of even a small
population of suprathermal electrons leads to changes in the cyclotron emission,
disproportionate to the numbers involved. For non-thermal plasmas, emission and
absorption are no longer related by Kirchhoff’s law and have to be determined
independently. In cases where the electron distribution is characterized by a hot
electron tail on a bulk Maxwellian distribution, it is in principle possible to discrim-
inate between thermal and suprathermal contributions to ECE by measurements at
right angles to the magnetic field using an optically thick harmonic.

9.6 Synchrotron radiation

We shall separate our discussion of synchrotron radiation into two ranges, one
characterized by electron energies ranging from some tens to a few hundred keV
and the other in which electron energies are ultra-relativistic. The moderately rel-
ativistic range is of interest in that it includes, at the lower end, electron energies
expected in the next generation of tokamaks. The ultra-relativistic range is largely
of astrophysical interest. Analyzing spectra in both relativistic regimes is possible
only by making various approximations and in general the synchrotron radiation
spectrum has to be found numerically.

9.6.1 Synchrotron radiation from hot plasmas

We return to the general expression for the spectral power density given in (9.60)
and for simplicity set θ = π/2, since this choice corresponds to peak synchrotron
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emission. We identify the contributions from the O(E ‖ B0) and X (E ⊥ B0) modes,
namely

dP O(ω, π/2)

dω
= e2ω2

8π2ε0c

∞∑
l=1

β2
‖ J 2

l

(
ωβ⊥
�

)
δ(ω − l�) (9.67)

dP X (ω, π/2)

dω
= e2ω2

8π2ε0c

∞∑
l=1

β2
⊥ J ′2

l

(
ωβ⊥
�

)
δ(ω − l�) (9.68)

The synchrotron emission coefficient εS(ω) may be found from (9.67), (9.68) by
averaging over the distribution function f (p). If we assume an isotropic distribu-
tion then, dropping the π/2 signature

ε
(O,X)
S (ω) =

∫ ∞

0

〈
dP (O,X)(ω)

dω

〉
f (p)p2 dp (9.69)

with 〈
dP (O,X)(ω)

dω

〉
= 2π

∫ π

0

dP (O,X)(ω, ϑ)

dω
sinϑ dϑ

= e2ω2

8π2ε0c

∞∑
l=1

A(O,X)
l (γ )δ(ω − l�) (9.70)

where

A(O,X)
l (γ ) = 2πβ2

∫ π

0

[
J 2

l

(
ω
�
β sinϑ

)
cos2 ϑ

J ′2
l

(
ω
�
β sinϑ

)
sin2 ϑ

]
sinϑ dϑ (9.71)

and ϑ denotes the angle between B0 and p. Explicit forms for A(O,X)
l (γ ) were

found by Trubnikov (1958) for three ranges of electron energy: non-relativistic
(lβ � 1), moderately relativistic (γ 3 � l) and ultra-relativistic (γ 
 1, l 
 1).

To determine the plasma emission coefficient for moderately relativistic elec-
trons we use (9.69) with the relativistic Maxwellian distribution function

f (p) = N exp[−(p2c2 + m2c4)1/2/kBTe]

4π(kBTe)2(m/c)yK2(y)
(9.72)

where y = mc2/kBTe and K2(y) is a modified Bessel function. The plasma emis-
sion coefficient is then

ε
(O,X)
S (ω) = e2ω2

8π2ε0c

∫ ∞

0

∞∑
l=1

A(O,X)
l (γ ) δ[ω − l�] f (p) p2 dp (9.73)

with the representation for A(O,X) appropriate to this energy range (γ 3 � l)
given by Trubnikov (1958). Evaluating (9.73) is straightforward and with an upper
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Fig. 9.8. Emission spectrum for radiation by moderately relativistic electrons before and
after summation over the harmonics (after Hirshfield, Baldwin and Brown (1961)).

limit for electron energies consistent with the assumption y 
 1, the synchrotron
emission at θ = π/2 is given by

ε
(O,X)
S (ω,

π

2
) =

(
ω2

p

�0c

)(
ω2kBT

8π3c2

) ∞∑
l=1

�(l, x, y) (9.74)

where

�(l, x, y) =
√

2π y5/2 l2

x4
(l2 − x2)1/2 A(O,X)

l

(
l

x

)
exp

[
−y

(
l

x
− 1

)]
(9.75)

with x = ω/�0, denotes the Trubnikov function.
The emission spectrum is governed by the Trubnikov function. Figure 9.8 plots

�(l, x, 10) for the first twenty harmonics of the X-mode as a function of x; y = 10
corresponds to an electron temperature of about 50 keV. The emission spectrum
shows discrete harmonic structure below some critical value lc beyond which
structure is smoothed on account of harmonic overlap. Individual harmonics are
now only approximately Gaussian near maximum intensities with a half-width
�ωl 	 l3/2(kBT/mc2)�0 for small l. The lines are subject to a relativistic broaden-



9.6 Synchrotron radiation 351

ing (due to the relativistic change of mass) which increases with harmonic number
and which has the effect of making the shape function asymmetric.

For electron temperatures above about 10 keV ECE becomes less useful as
a diagnostic on account of harmonic overlap. Fidone and Granata (1994) have
proposed using synchrotron radiation (ESE) as an alternative diagnostic for next-
generation tokamaks. ESE offers several advantages in that high harmonics are
unaffected by cut-offs and the ray paths are effectively straight lines.

9.6.2 Synchrotron emission by ultra-relativistic electrons

Synchrotron radiation by electrons of ultra-relativistic energies, γ 
 1, was first
suggested as a source of cosmic radio waves by Alfvén and Herlofson (1950) and
by Kiepenheuer (1950) and later used by Shklovsky (1953) to interpret the radio
spectrum from the Crab nebula. It is helpful to see first of all how the principal
characteristics of the emission in this regime can be established qualitatively from
a simple model. In particular it is easy to show that the radiation is focused within
a cone of aperture angle ∼ γ−1 about the direction of the instantaneous velocity of
the electron. From the Liénard–Wiechert potential (9.5) it is clear that the denomi-
nator becomes small as θ = cos−1(v̂·R̂) tends to zero. This property determines the
character of the radiation field which has the form of a sequence of pulses emitted
at that point on the orbit at which the radiation is beamed towards the observer.
Figure 9.9 illustrates the essential feature, namely that an observer sees the electron
only through flashes of radiation emitted as it transits a small segment of its orbit.
The radiation field is governed by the maximum value of A⊥, the component of A
perpendicular to n:

|A⊥| = µ0

4πR

[
evc sin θ

c − v cos θ

]

These maxima occur at θmax 	 ±γ−1 and since γ 
 1 for highly relativistic
electrons, it follows that the synchrotron emission is beamed strongly into a narrow
cone about the forward direction in what is sometimes referred to as the ‘lighthouse
effect’.

This result enables us to determine the pulse width �t ′. As seen by the observer,
the pulse switches on at time t1 = (R + v�t ′)/c, and ends at the later time t2 =
2�t ′ + (R − v�t ′)/c. The observed pulse width �t is therefore

�t = 2�t ′
(

1 − v

c

)
= 2�t ′/γ 2

(
1 + v

c

)
Now �t ′ = θm/� = 1/γ� and since v/c ∼ 1

�t 	 (γ 3�)−1 = (γ 2�0)
−1
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Fig. 9.9. Instantaneous synchrotron radiation beamed from an ultra-relativistic electron
(the ‘lighthouse effect’).

The radiation spectrum is made up from a sequence of pulses at intervals τ =
2π/� 
 �t . The emission is linearly polarized and, on the basis of the argument
presented, we expect the emission to peak at a frequency

νc = ωc

2π
	 1

2π
γ 3� (9.76)

For frequencies above this the spectrum should show a cut-off so that (9.76) pro-
vides a measure of the width of the synchrotron spectrum.

Returning to the general result for the synchrotron power radiated by an electron,
it is possible to apply the ultra-relativistic criterion together with the requirement
l 
 1 to show that in this limit with β‖ = 0 one can reduce (9.62) to

PUR
l = e2�2

0

4π2
√

3ε0c

l

γ 4

∫ ∞

2l/3γ 3
K5/3(y) dy (9.77)

Here K5/3(y) is a modified Bessel function. Since harmonics are now very closely
spaced it makes more sense to recast (9.77) to show the power radiated per unit
frequency rather than per harmonic. This gives

dPUR(ω)

dω
=

√
3e2�0

8π2ε0c

(
ω

ωc

)∫ ∞

ω/ωc

K5/3(y) dy (9.78)

For ω/ωc � 1, dPUR(ω)/dω ∝ (ω/ωc)
1/3 while in the opposite limit ω/ωc 
 1,

dPUR(ω)/dω ∝ (ω/ωc)
1/2exp(−ω/ωc). The shape function determining the spec-

trum across the range is shown in Fig. 9.10.
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Fig. 9.10. Shape function S(ω/ωc) for synchrotron radiation spectrum in the ultra-
relativistic limit.

To determine the spectrum in this limit we need to know the electron energy
distribution. A clue to the distribution follows from the observation that energetic
electrons in supernovae remnants are sources of cosmic rays and the observed
cosmic ray energy spectrum is well represented by a power law. If we suppose
that this reflects the electron energy distribution in the source, then

N (E)dE = C E−δ dE (9.79)

where N (E)dE denotes the number of electrons with energy in the range (E, E +
dE) and δ is a constant. Balancing the radiation emitted against electron energy
loss, it is straightforward to show that the intensity of synchrotron emission is given
by

I (ν)dν = K1 B(δ+1)/2
⊥ ν−(δ−1)/2 dν (9.80)

We conclude from this analysis that an electron energy spectrum with a power law
dependence E−δ generates a synchrotron spectrum I (ν) ∝ ν−α with a spectral
index

α = 1

2
(δ − 1)



354 Plasma radiation

Fig. 9.11. Synchrotron emission spectrum from the Crab nebula.

The observed power law dependence of radio spectra together with the strong linear
polarization of the radiation make a compelling case for interpreting the emission
in terms of a synchrotron mechanism.

A typical emission spectrum from the Crab nebula is shown in Fig. 9.11.
Comparison with the bremsstrahlung spectrum shows that the source is non-
thermal; in general the contribution from thermal sources to radiation emitted by
supernova remnants is negligible. The observed radio emission is represented by a
power law dependence, Iν ∝ ν−α, over a wide range of frequencies. The spectral
index generally lies in the range 0.3–1.5 depending on the source. The spectral
range is very wide, extending up to frequencies in the hard gamma-ray region. The
gaps are due to absorption in the atmosphere. The marked change in spectral index
at ν ∼ 1013 Hz is indication of a difference in the energy distribution of electrons
from those responsible for the radio spectrum. This in turn reflects the different
populations, one associated with the supernova explosion itself, the source of the
other being the rotating magnetic neutron star. The pulsar injects highly relativistic
electrons into the nebula. Synchrotron self-absorption, unimportant for the X-ray
region, becomes significant at radio frequencies and distorts the spectrum from a
simple power law representation.
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9.7 Scattering of radiation by plasmas

We next consider ways in which radiation is scattered by plasmas. A plane
monochromatic electromagnetic wave incident on a free electron at rest is scat-
tered, the scattered wave having the same frequency as the incident radiation;
the scattering cross-section is defined by the Thomson cross-section, (9.17). For
scattering by electrons the Thomson cross-section has the value 6.65 × 10−29 m2;
scattering by ions, being at least six orders of magnitude smaller, rarely matters in
practice.

Thomson scattering results in a force driving the electron in the direction of the
incident wave (see Landau and Lifschitz (1962)). The electron ‘absorbs’ energy
from the wave at the average rate 〈S〉σT. Thus, the electron gains momentum from
the wave at a rate 〈S〉σT/c. On the other hand, the rate at which momentum is radi-
ated by the electron is c−1

∫ 〈dP/d�〉n d�, so that from (9.14) the total momentum
of the scattered wave is zero. The final result, therefore, is equivalent to a force on
the electron of magnitude

〈S〉σT

c
= 4π

3
ε0 E2

0r2
e

in the direction of the incident wave. This phenomenon is known as radiation
pressure and provides a small correction to the Lorentz equation.

9.7.1 Incoherent Thomson scattering

In practice we have to find an expression for the Thomson scattering cross-section
from all the electrons contained within a finite volume of plasma. Since Thomson
scattering is a key diagnostic for high temperature plasmas this needs in general
to be treated relativistically. Nevertheless, the non-relativistic limit is widely used
for electron temperatures up to several keV and is simpler to deal with analytically.
In this limit of (9.8) the scattered electric field Es is given in terms of an incident
electromagnetic field Ei (r, t) = E0 exp i(k0 · r −ω0t) by the dipole approximation

Es(r, t) =
[re

R
n × (n × Ei )

]
ret

= [(re/R)(nn − I) · Ei ]ret (9.81)

where I denotes the unit dyadic. In a relativistic formulation we may retain the
format of (9.81), substituting a generalized polarization dyadic P for (nn − I) so
that

Es(r, t) =
[re

R
P · Ei

]
ret

(9.82)
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Fig. 9.12. Scattering geometry.

To find a representation for P we have to return to the relativistic expression (9.8)
with β̇ββ determined by the Lorentz equation as in Exercise 2.9. The Fourier time
transform of (9.82) determines the frequency spectrum of the scattered field over
an interval T :

Es(r, ωs) = 1√
2π

∫ T/2

−T/2

[re

R
P · Ei

]
ret

eiωs t dt (9.83)

To proceed it is simpler to re-cast (9.83) in terms of the retarded time, t ′, which in
the usual radiation (far-field) approximation becomes t ′ 	 t − (r − n · r0(t ′))/c
(see Fig. 9.1). In this approximation, R 	 r and the scattered field may then be
represented as

Es(r, ωs) = reeiks ·r
√

2πr

∫ T ′/2

−T ′/2
gP(t ′) · E0ei(ωt ′−k·r0(t ′)) dt ′ (9.84)

where ks = ωsn/c, ω = ωs − ω0 and k = ks − k0. We now assume that over the
interval T ′ the particle velocity v is effectively constant so that r0(t ′) = r0(0)+vt ′.
If we disregard the initial displacement, (9.84) becomes

Es(r, ωs) =
√

2π
re

r
eiks ·r g(P · E0) δ(ω − k · v) (9.85)

Explicitly, the scattered frequency ωs = ω0 + (ks − k0) · v so that for an incident
wave propagating in the x-direction (see Fig. 9.12),

ωs = (1 − x̂ · βββ)
(1 − n · βββ)ω0

or, to first order in β,

ωs = ω0(1 − (x̂ − n) · βββ) ≡ ωD (9.86)

The Doppler-shifted frequency ωD of the incident wave combines the effect of elec-
tron motion both along the propagation vector of the incident wave (down-shifting



9.7 Scattering of radiation by plasmas 357

the incident frequency) and along the direction of propagation of the scattered wave
(up-shifting the frequency).

The next step is determining the scattered power. Making use of the property of
the delta function expressed in Exercise 9.1 we may invert (9.85) to get

Es(r, t) = re

r
P · E0ei(ks ·r−ωDt) (9.87)

The corresponding Poynting flux is

Ss = 1

2
cε0

(re

r

)2
|P · E0|2n

The power per unit solid angle per unit frequency in the scattered radiation is then

d2 P

d� dωs
= r2

e 〈S0〉|P · e|2δ(ωs − ωD) (9.88)

where 〈S0〉 is the mean incident Poynting flux and e = E0/|E0|.
Provided correlations between plasma electrons and ions are unimportant the to-

tal scattered power is found by adding the contributions from individual electrons.
We shall see in Section 9.8 that this is permissible provided kλD 
 1. For present
purposes it is enough to note that for kλD 
 1, the phase difference between the
radiation fields from a test electron and from electrons in its Debye cloud is large
and in consequence the radiation fields of the test electron and its Debye cloud are
incoherent. Under these conditions the total scattered power is found by averaging
(9.88) over the electron distribution.

At this point we need to exercise some care. In computing the total power
in the radiation scattered by electrons in some volume element dr we add the
contributions from individual electrons which means that we must measure time
at the source, not at the detector. As we have already seen in Section 9.2.2 this
has the effect of introducing a factor dt/dt ′ ≡ g. Sheffield (1975) has given an
instructive physical argument for this finite transit time effect, the need for which
was identified by Pechacek and Trivelpiece (1967). The scattered power from a
distribution of electrons f (v) in a scattering volume V is then

d2 P

d� dωs
= r2

e

∫ ∫
V
〈S0〉|P · e|2 f (v)g2δ(ω − k · v)dr dv (9.89)

showing both g factors, one from (9.85), the other from the transit time effect.
In the non-relativistic limit these distinctions disappear and (9.89) is greatly

simplified by discarding g2 and taking the polarization dyadic out of the integrand
since it is velocity-independent in this limit. Then (9.89) reduces to

d2 P

d� dωs
= r2

e

k

{
|(nn − I) · e|2

∫
V
〈S0〉dr

}
fk

(ω
k

)
(9.90)
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where fk(vk) is the projection of the velocity distribution along k, i.e.

fk(vk) =
∫

f (v⊥, vk)dv⊥

For a Maxwellian distribution the differential scattering cross-section per unit vol-
ume per unit frequency interval is then

d2σ

d� dωs
= r2

e S(k, ω) sin2 θ (9.91)

where θ = cos−1(n · e) and the scattering ‘form factor’ S(k, ω) is given by the
Gaussian

S(k, ω) = ne

k

(
m

2πkBTe

)1/2

exp

[
− m ω2

2k2kBTe

]
(9.92)

In principle the form factor affords a direct measure of the electron distribution
function projected on to k. In practice mapping the distribution function from
measurements of scattered radiation is not usually sufficiently accurate to be
useful. It does however serve to discriminate non-Maxwellian distributions from
Maxwellian. Thomson scattering measurements do allow electron temperature and
electron density to be determined in equilibrium plasmas. The height of the spec-
trum determines the electron density while the half width, or more exactly the full
width at half maximum (FWHM), �ω, given by

�ω = 4ω0

(
2kBTe

mc2
ln 2

)1/2

sin
θ

2
(9.93)

provides a direct measure of electron temperature.

9.7.2 Electron temperature measurements from Thomson scattering

Thomson scattering of laser light is a widely used diagnostic in fusion plasmas,
providing good spatial resolution. The scattered power is proportional to σTneL
where L denotes the length of plasma traversed by the light beam. Given the
smallness of σT this means that only a minute fraction of incident photons will
be scattered. For a density ne ∼ 1020 m−3 and taking L ∼ 0.01 m, the fraction of
photons scattered is only about 10−10. Various factors reduce this yet further.

Aside from the requirement that the source of the incident radiation be both
monochromatic and of high brightness, a light scattering diagnostic needs optics
to carry the laser light into the plasma and dispose of it in a beam dump, optics
to collect the scattered light and separate out the different wavelengths, and a
detector. Allowing for the geometry of the collection optics, the efficiency of the
optical system and the quantum efficiency of the detector means that in practice
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Fig. 9.13. Thomson scattering measurements of electron temperature in the T3-A tokamak
(after Peacock et al. (1969)).

the fraction of incident photons collected may be no more than 10−15. A key issue
in light scattering experiments is the need to prevent stray light from reaching the
detector, given that the ratio of the scattered power that is detected to the incident
power is so small. One way round this problem is by wavelength discrimination
since stray light, as distinct from scattered light, is not shifted in wavelength. Other
precautions include an arrangement of baffles to reduce light scattered from the
walls and entry port of the input beam and the beam dump. Apart from quantum
noise from both the detector and amplifying electronics, plasma bremsstrahlung
and recombination radiation will be present as background noise at the detector.
Moreover unlike the scattered light, this emission is generated over the plasma as
a whole, not simply from the scattering volume.

A landmark in Thomson scattering experiments was the measurement of electron
temperature in the tokamak T3-A by Peacock et al. (1969). Prior to this experi-
ment, measurements of the plasma energy had been made using a diagmagnetic
diagnostic which is subject to a number of limitations. Thomson scattering estab-
lished beyond doubt that temperatures of the order of 1 keV were reached in early
tokamak experiments. Results from these measurements are shown in Fig. 9.13.
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9.7.3 Effect of a magnetic field on the spectrum of scattered light

The effect of a magnetic field on the scattering form factor (Salpeter (1961), Hag-
fors (1961) and Dougherty, Barron and Farley (1961)) appears only when the wave
vector k is almost orthogonal to the magnetic field B. With this alignment the
spectrum is modulated at integral multiples of the electron cyclotron frequency. As
the orthogonality of k with B weakens, the component of electron motion along the
magnetic field gives rise to a Doppler broadening of the gyro-resonances. Once the
Doppler line width 2(k · b)Ve, where Ve is the electron thermal velocity, exceeds
the spacing between the resonances, �e, the resonances will be smeared out. So a
necessary condition for observing magnetic fine structure is 2kVe cos(k̂ · b) � �e.
In practice spatial variation in the magnetic field over the scattering volume may
also result in demodulation.

Magnetic modulation of the spectrum was first detected by Evans and Car-
olan (1970) in an experiment using a relatively dense (ne ∼ 1021 m−3), cool
(Te ≈ 20 eV) theta-pinch plasma as a source. With the scattering vector k almost
perpendicular to B the fine structure shown in Fig. 9.14 was resolved. The regularly
spaced peaks show a separation approximately equal to the electron cyclotron
frequency, measured independently by Faraday rotation and corresponding to a
magnetic field of about 1.5 T. Forrest, Carolan and Peacock (1978) subsequently
made use of the sensitivity of the depth of modulation at the cyclotron frequency
to the orthogonality of k and B to measure the direction of the poloidal magnetic

Fig. 9.14. Magnetic modulation of scattered light (after Evans and Carolan (1970)).
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field in a tokamak. For the relatively lower densities and much higher temperatures
of tokamak plasmas the flux of scattered light in individual harmonics is too weak
to allow harmonic structure in the scattered light spectrum to be resolved. This
difficulty was overcome using a multiplexing technique due to Sheffield (1975),
in which the free spectral range of a Fabry–Perot interferometer is set equal to
the cyclotron harmonic frequency. The sensitivity of the modulation to the orthog-
onality condition allowed the pitch of the field line to be determined to within
0.15◦.

9.8 Coherent Thomson scattering

In treating incoherent Thomson scattering the expression for the total power was
found by summing the contributions from individual electrons, a procedure per-
missible as long as kλD 
 1. This condition ensures that correlations between
plasma particles are unimportant. The next task is to determine the scattering form
factor when collective effects have to be taken into account; this happens when
kλD ≤ 1. The summation over the plasma particles has now to be carried out mak-
ing proper allowance for correlations. The need to allow for correlations became
apparent from observations of ionospheric backscatter. Gordon (1958) suggested
that it should be possible to detect Thomson scattering of radar pulses from the
ionosphere. Bowles (1958) found that while the scattered power was in broad
agreement with that predicted, the bandwidth of the scattered signal proved to be
much less than the Doppler width determined by thermal electrons. It appeared
that although the radar pulse was scattered by electrons, their behaviour in turn
was governed by ion dynamics, a result borne out by subsequent studies of the
scattering of radiation by plasma (see Dougherty and Farley (1960), Fejer (1960)
and Salpeter (1960)).

9.8.1 Dressed test particle approach to collective scattering

A helpful way of dealing with coherent Thomson scattering makes use of the con-
cept of test particles. Before dealing with this let us first consider what needs to be
done. When a test charge is introduced into a plasma we know that plasma electrons
and ions react to its presence by forming a shielding cloud around it, resulting in the
test particle being ‘dressed’ by this cloud of particles. We saw in Section 7.8 how
to describe this response in terms of the plasma dielectric function. Our objective
is to determine the spectrum of density fluctuations which governs the form factor
by superposing the fields of all dressed test particles in the plasma. In other words
each electron and ion in turn takes on the role of test particle and the individual
contributions are added up. Since particle correlations have been allowed for by
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means of dressed test particles, these particles themselves are then uncorrelated
so that no further consideration of correlations is needed. A distinction is drawn
between test electrons and test ions. For electrons we have to take account of the
electron itself as well as the electron cloud dressing it. Test ions on the other hand
need not be counted as such since their contribution to scattering is insignificant,
so that only the electron cloud contributes in the case of ions.

Using the results from Section 7.8 a Klimontovich density defined as Ne ≡∫
fKe(r, v) dv, given by

Ne(k, ω) = 1

2π

electrons∑
j

[
1 − χe

1 + χe + χi

]
δ(ω − k · v j )

+ Z

2π

ions∑
l

[
χe

1 + χe + χi

]
δ(ω − k · vl) (9.94)

in which χα denotes the susceptibility of species α. Since we equate coherent
scattering from the plasma with incoherent scattering from a gas of non-interacting
dressed ions and electrons, the spectral power density is now determined by form-
ing the quantity 〈|Ne(k, ω)|2〉. Introducing the scattering form factor

S(k, ω) = lim
T →∞
V →∞

(2π)4

T V

〈|Ne(k, ω)|2〉
ne

(9.95)

and evaluating (9.95) using (9.94) gives

S(k, ω) =
〈

2π

neV

[
electrons∑

j

∣∣∣∣1 − χe

1 + χe + χi

∣∣∣∣
2

δ(ω − k · v j )

+
ions∑

l

∣∣∣∣ χe

1 + χe + χi

∣∣∣∣
2

Z2δ(ω − k · vl)

]〉
(9.96)

where the square of the delta functions has been represented in the same way as
in Exercise 9.6. Evaluating the summations of the delta functions in (9.96) using
the representation of the Klimontovich distribution in (7.1) results in contributions
(V/k) 〈FKαk(ω/k)〉 = (V/k) fαk(ω/k), where α = e, i and the subscript k de-
notes the projection of the velocity distribution along k defined in Section 9.7.1.
Then the scattering form factor reduces to

S(k, ω) = 2π

nek

{∣∣∣∣1 − χe

1 + χe + χi

∣∣∣∣
2

fek

(ω
k

)
+ Z 2

∣∣∣∣ χe

1 + χe + χi

∣∣∣∣
2

fik

(ω
k

)}
(9.97)
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It remains to evaluate the susceptibilities and hence determine the form factor
explicitly. In the case of a Maxwellian plasma it is straightforward to show that

χα = ω2
pα

kV 2
α

1√
2π

∫ (
v

Vα

)
exp(−v2/2V 2

α )

ω − kv
dv

= 1

k2λ2
D

(
ZαnαTe

neTα

)
w(ξα) (9.98)

where Vα = (kBTα/mα)
1/2 is the species thermal speed, ξα = ω/(

√
2kVα) and

w(ξ) = 1√
π

∫
C

ζe−ζ 2
dζ

ξ − ζ

is related to the plasma dispersion function defined in Section 7.3.2. For an appro-
priate contour C , w(ξ) may be evaluated to give

w(ξ) = 1 − 2ξe−ξ2
∫ ξ

0
eζ

2
dζ + i

√
πξe−ξ2

(9.99)

From (9.98) it is evident that for kλD 
 1, χα � 1 and consequently the form
factor is determined by the O(1) contribution from the first term in (9.97). This
is just the incoherent Thomson scattering discussed in Section 9.7.1. However for
kλD � 1, χe � 1 and contributions to S(k, ω) from coherent scattering become
important. For χe 
 1 the entire electron term may be ignored and the sole
contribution to the form factor comes from the ion component.

The spectrum of scattered radiation reflects the collective effects exhibited by the
form factor. For an unmagnetized plasma the resonant denominator corresponds
to electron plasma waves in the region of ω = ωp and to ion acoustic waves
in the low frequency range ω ∼ kcs, where cs is the ion acoustic speed. For
both features the shape of the resonance is determined by Landau and collisional
damping. Electron plasma waves are strongly Landau damped unless kλD � 1;
in this case one expects a resonant feature at the Langmuir frequency. Under
conditions where Landau damping becomes significant the electron resonance will
be broadened correspondingly. The ion feature in turn reflects the characteristics
of ion acoustic waves which are governed by both ions and electrons. In particular
the ion feature will be weak unless Te 
 Ti to ensure that ion Landau damping is
not severe.

The fact that the two contributions to the spectrum are well separated allows
a simplification to be made in the general expression for S(k, ω) (see Salpeter
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Fig. 9.15. Salpeter shape function.

(1960)). In the ion term Salpeter set χe ∼ 1/(kλD)
2 and in the electron term χi ∼ 0.

Then (see Exercise 9.14)

S(k, ω) = (2π)1/2

Ve
�αe(ξe)+ (2π)1/2

Vi
Z

[
1

1 + k2λ2
D

]2

�αi(ξi) (9.100)

in which the shape function

�α(ξ) = exp(−ξ 2)

|1 + α2w(ξ)|2 (9.101)

has the same functional form for both the electron and ion features and

α2
e = 1

k2λ2
D

α2
i = Z

Te

Ti

[
1

1 + k2λ2
D

]

The shape function is represented in Fig. 9.15. The scattering parameter αe is an
important index in scattering from plasmas; αe � 1 corresponds to incoherent
Thomson scattering and αe � 1 to cooperative scattering. In terms of the scattering
angle θ = cos−1(k̂0 · k̂s),

αe = 1

(k2
0 − 2k0ks cos θ + k2

s )
1/2λD

	 λ0

4πλD sin θ/2
(9.102)

where λ0 is the wavelength of the incident radiation.



9.9 Coherent Thomson scattering: experimental verification 365

9.9 Coherent Thomson scattering: experimental verification

It is clear from (9.102) that by varying the scattering angle θ one can pass from
a regime of incoherent Thomson scattering (αe � 1) to one of coherent (or col-
lective) Thomson scattering for which αe > 1. Alternatively, for a fixed scattering
geometry one could sweep through αe = 1 by switching to longer wavelength
light. In practice this is not usually an option. Substituting values of λD typical
of a moderately dense laboratory plasma with electron temperature of 1 keV, and
choosing λ0 = 1.06 µm corresponding to neodymium laser light, it follows from
(9.102) that to observe coherent Thomson scattering one has to look close to the
forward direction. In this case the shrinking solid angle sets a limit in practice.
Moreover, stray light problems are exacerbated for small θ . For realistic choices
of scattering angle and laser wavelength, the condition for coherent Thomson
scattering translates into a condition that the electron density ne � 1022 m−3.

Both low and high frequency features in the scattered light spectrum have diag-
nostic potential. The height of electron line provides a measure of electron density
while from the ion resonance we may in principle deduce the ratio of electron to
ion temperatures and hence determine Ti if Te is known from other measurements.
However, as we shall see, the presence of impurity ions may introduce ambiguities
into this measurement.

The first identification of the ion feature in a laboratory plasma was made by
DeSilva, Evans and Forrest (1964) from studies of ruby laser light scattered by a
hydrogen arc plasma. The electron density, needed to characterize αe, was mea-
sured independently from Stark broadening of the Hβ line. By detecting scattered
light at two angles it was possible to isolate both incoherent (αe � 1) and coherent
(αe > 1) Thomson regimes.

Coherent Thomson scattering diagnostics have been used to advantage in labo-
ratory plasmas, notably in laser-produced plasmas where the high electron density
eases the other constraints, despite difficulties over and above those already out-
lined in Section 9.7.2. Problems may arise on account of the sensitivity of the ion
feature to a number of effects, for example becoming asymmetric due to electron
drift velocities and the presence of impurities in the plasma. In thermal plasmas,
the plasma lines are usually weak features in the spectrum and hence difficult to
resolve. These difficulties notwithstanding, various groups, for example Baldis,
Villeneuve and Walsh (1986), Baldis et al. (1996), Labaune et al. (1995, 1996)),
have used coherent Thomson scattering to characterize ion acoustic waves and
Langmuir waves in laser-produced plasmas.

The distribution worldwide of a number of powerful radar backscatter facilities
has allowed a range of parameters characterizing the ionospheric plasma to be
determined from measurements of Thomson scattering. These include not only
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Fig. 9.16. Radar backscatter spectrum from the ionosphere, taken from an altitude of
300 km on 31 March 1971. The solid line represents the Salpeter spectrum fitted to the
data points (courtesy of J.M. Holt).

electron density and temperature but ion density, ion mass, composition of the
plasma, mean drift velocity and the ion–neutral collision frequency. Figure 9.16
plots radar backscatter data as a function of the frequency shift with the line show-
ing the predicted spectrum. The dashed line denotes the spectral shift resulting
from the mean motion of the ionospheric plasma. This spectrum was recorded
from a height of 300 km, where O+ is the only ion of significance and this helped
minimize deviations from the Salpeter spectrum due to other ions being present.
Above this height, protons and He+ ions from the solar wind increasingly affect
the composition of plasma in the high ionosphere. In lower regions plasma compo-
sition is governed by the photochemistry of the ionosphere. The effects of plasma
composition on the scattering form factor were first discussed by Moorcroft (1963).

9.9.1 Deviations from the Salpeter form factor for the ion feature: impurity ions

Impurity ions are present to some extent in all laboratory plasmas. Given their
greater mass and consequently lower thermal velocities, impurities serve to en-
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Fig. 9.17. Effect of impurities on the scattering form factor.

hance the central part of the ion feature, so distorting the spectrum. In practice this
makes for difficulties in discriminating between a change in ionic composition and
one in which the temperature ratio Te/Ti changes.

It is straightforward to generalize the scattering form factor (9.97) to include
different species of ions. Evans (1970) considered the effects of increasing the
concentration of oxygen impurity ions (8O16) in a hydrogen plasma, finding a
central feature altering the spectrum from that for a pure hydrogen plasma. The
height of this feature increased with increasing relative abundance of oxygen ions.
For Te/Ti = 5 with 5% oxygen present, Fig. 9.17 shows that scattering from the
impurity ions dominates the ion feature, which is well-defined for an impurity
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Fig. 9.18. Ion feature in the coherent Thomson spectrum for a two-species plasma showing
contributions from Au and Be ions (after Glenzer et al. (1999)).

content of 1%. The effect of the impurity becomes even more marked at lower
Te/Ti ratios. Evans also examined the effect of increasing the charge Z of the im-
purity ion in a hydrogen plasma contaminated by 1% of Z Fe56, where 0 < Z ≤ 15.
Increasing the effective charge of the impurity ion produced a scattered spectrum
broadly similar to that in which the impurity abundance is increased. In principle
it is feasible to deduce impurity concentrations from the scattered spectra, though
for most laboratory plasmas it would prove an unwieldy diagnostic.

Glenzer et al. (1999) have reported coherent Thomson scattering from dense
ICF plasmas with more than one ion species present. In particular, they formed a
plasma by irradiating targets in which the composition was controlled by coating
discs with multilayers of Au and Be of varying thickness. Figure 9.18 shows the
ion feature in the Thomson spectrum from a plasma containing 4% Au and 96%
Be with a pair of ion acoustic waves from each species clearly resolved.

The relative intensities of the ion components are determined by the damping of
these waves. For the spectrum in Fig. 9.18 gradients in plasma parameters are not
important since it corresponds to a time after the heating beam has been switched
off and in addition the low-Z blow-off plasma tends to be isothermal.
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9.9.2 Deviations from the Salpeter form factor for the ion feature: collisions

For dense, relatively cold plasmas Coulomb collisions become more important than
Landau damping in determining the line shapes. For the ion feature this change
appears whenever the mean free path for ion–ion collisions becomes comparable
to the wavelength of ion acoustic fluctuations, i.e. for νii/kcs ≈ 1 where νii is the
ion–ion collision frequency.

The effect of Coulomb collisions on the low frequency region of the spectrum
was determined by Kivelson and DuBois (1964) from the Balescu–Lenard kinetic
equation (see Section 12.2.1) and by Boyd (1966) using a fluid model. The fluid
model leads to a low frequency spectrum with two features. In addition to the
ion acoustic resonance there is another at zero frequency due to non-propagating
entropy fluctuations. The width of the ion resonance is determined by the thermal
conductivity and viscosity coefficients; that of the entropy fluctuation resonance
depends only on thermal conductivity.

Mostovych and DeSilva (1984) measured the scattered light spectrum from a
dense low temperature source for which both density and temperature were well
characterized. Their scattered spectrum for an argon plasma is shown in Fig. 9.19.
The finite pulse length meant that the entropy fluctuation contribution to the spec-
trum was not observed. Figure 9.19 plots the Lorentzian line from the fluid model
using parameters from the experiment, showing generally satisfactory agreement.

Fig. 9.19. Effect of collisions on the scattering form factor. The data correspond to the
spectrum obtained by Mostovych and DeSilva (1984); the curve is the line shape from the
fluid model (Boyd (1966)).
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Subsequent work by Zhang, DeSilva and Mostovych (1989) succeeded in resolving
the contribution to the spectrum due to entropy fluctuations.

Exercises

9.1 Section 9.2 summarizes some key results in the electrodynamics of radia-
tion from charged particles. Solutions to (9.1) are found in terms of the re-
tarded Green function (see Jackson (1975) and Boyd and Sanderson (1969)
for details).

In establishing Feynman’s result (9.7) one needs the delta function
property ∫ ∞

−∞
δ[h(x)]γ (x)dx =

∑
i

γ (xi )/

∣∣∣∣dh(xi )

dx

∣∣∣∣
in which the xi are the roots of h(x) = 0. Starting from (9.3) show that

E(r, t) = e

4πε0

[
n

gR2
+ 1

cg

d

dt ′

(
n − βββ

gR

)]
ret

where g = 1 − n · βββ. To cast this in Feynman form first show that

1

c

dn
dt ′ = n × (n × βββ)

R
(E9.1)

Show that the expression (9.8) for Erad(r, t) follows from the

[
d2n
dt2

]
ret

term in (9.7). In the non-relativistic limit show that, at large distances
from the source, the radiation field from a particle of charge e moving
with velocity ṙ0(t) is given by (e/4πε0c2 R)̈r0⊥ (t − R/c) where r̈0⊥ is the
acceleration transverse to the line of sight.

Show that

n × {(n − βββ)× β̇ββ}
g2

≡ d

dt ′

[
n × (n × βββ)

g

]

assuming that n is only weakly time-dependent.

9.2 Using (9.13), consider a charged particle executing instantaneously circu-
lar motion and show that

dP(t ′)
d�

= e2β̇2

16π2ε0c

1

(1 − β cos θ)3

[
1 − (1 − β2) sin2 θ cos2 φ

(1 − β cos θ)2

]
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Compare this angular distribution with that found in the case in which
particle velocity and acceleration are collinear; in particular note that here
too the peak power is radiated in the forward direction.

[Hint: Choose a coordinate system with βββ instantaneously along Oz and
β̇ββ along Ox ; θ, φ are the usual polar angles.]

9.3 Establish the relativistic generalization of Larmor’s formula, (9.16).

[Hint: Rather than the lengthy exercise that a direct integration of (9.13)
involves, use the covariant form

P = e2

6πε0m2
0c3

[
dpµ
dτ

dpµ

dτ

]

where pµ is the momentum–energy four-vector and τ is the proper time.
On evaluating the scalar product of the four-vectors, the result follows
directly.]

For a particle with energy E moving in a uniform magnetic field B show
that

dE

dt
= −K E2 B2

⊥

where K is a constant.

9.4 By integrating (9.38) successively in the optically thick limit (τ0 → ∞)

establish that the spectrum of the outgoing radiation is that of a black body
provided the temperature does not vary along the line of sight.

9.5 Establish (9.47) for the energy radiated by a classical electron and show
that the plasma bremsstrahlung emission coefficient is described by (9.48).
For this you will need the Bessel function relationships

x[K 2
1 (x)+ K 2

0 (x)] = −(d/dx)[x K1(x)K0(x)]

lim
x→0

K0(x) = − ln x lim
x→0

K1(x) = 1/x

Confirm the results (9.55) and (9.56).

By comparing the free–bound emissivity εfb to that from bremsstrahlung
εff show that

εfb

εff
∼
(

Z 2 Ry

kBTe

)
2

n3

Gn

g
exp

(
Z 2 Ry

n2kBTe

)

Under what conditions is εfb negligible compared to εff?

Verify the expression (9.57) for the free–free absorption coefficient.
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9.6 To deduce (9.60) starting from (9.26) with the geometry of Fig. 9.7 use the

representation exp(i x sin y) =
∞∑

l=−∞
Jl(x) exp(ily) so that

exp

{
iω

[
t − n · r0(t)

c

]}
=

∞∑
l=−∞

Jl

(ω
�
β⊥ sin θ

)
× exp[i(ω − l�− ωβ‖ cos θ)t]

From the geometry of Fig. 9.7 show that

n × (n × βββ) = x̂[−β⊥ cos�t cos2 θ + β‖ sin θ cos θ ] + ŷ[β⊥ sin�t]

+ ẑ[β⊥ cos�t sin θ cos θ − β‖ sin2 θ ]

≡ X x̂ + Y ŷ + Z ẑ (E9.2)

Use these results in (9.26) to show that

d2W (ω)

d� dω
= e2ω2

16π3ε0c

∣∣∣∣
∫ ∞

−∞

∞∑
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Jl

(ω
�
β⊥ sin θ

)

× exp[i(ω − l�− ωβ‖ cos θ)t][X2 + Y 2 + Z 2]dt

∣∣∣∣
2

Integrating over time and using Bessel recurrence relations, show that

d2W

d� dω
= e2ω2

8π2ε0c

(
T

2π

) ∞∑
l=1

∣∣∣∣∣∣∣∣∣

x̂(β‖ − cos θ) cot θ Jl(x)

+ŷiβ⊥ J ′
l (x)

+ẑ(cos θ − β‖)Jl(x)

∣∣∣∣∣∣∣∣∣

2

× δ(l�− ω[1 − β‖ cos θ ])

where T is the radiation emission time. To arrive at this expression the
term involving δ2(ω) has to be interpreted as lim

T →∞
(T/2π)δ(ω).

9.7 Integrate (9.60) over all directions to obtain (9.62). The algebra involved
is daunting if one goes about this directly. It is best to determine Pl in
the guiding centre frame and then apply a Lorentz transformation to the
observer’s frame.

[Hint: The integration over θ uses properties of Bessel functions. The ar-
gument is due to Schott (1912). Making use of the representation J 2

l (x) =
1
π

∫ π
0 J0(2x sinα) cos 2lα dα leads to

dPl

d�
= e2l2�2

8π2ε0c

∫ π

0
J0(2lβ⊥ sin θ sinα)

[
β2

⊥ cos 2α − 1
]

cos 2lα dα
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Then apply the result∫ π/2

0
J0(y sin θ) sin θ dθ =

√
π

2y
J1/2(y) = sin y

y

to obtain an expression for Pl in the guiding centre frame. Finally Lorentz
transform to the observer’s frame to get (9.62).]

Use (9.16) to show that the total power radiated is

P tot = e2�2
0

6πε0c

(
β2

⊥
1 − β2

)

Check the assumption made in the development of the theory of cyclotron
radiation that the energy radiated is negligible compared with the total
energy of the radiating electron.

Establish (9.65) for the plasma cyclotron emissivity.

9.8 Show that the power radiated as cyclotron radiation compared with that
radiated as bremsstrahlung is

Pcyc

Pb
∼ 2 × 1016T 1/2

e (eV)B2

Z2neni

9.9 Establish (9.74) for the synchrotron emissivity from moderately relativistic
electrons.

Using the physical model for synchrotron radiation outlined in Sec-
tion 9.6.2 show that the peak emission occurs at angles of θm ∼ ±γ−1

for ultra-relativistic electrons (γ 
 1).

Establish (9.77), (9.78) for the power radiated by an electron in the ultra-
relativistic limit β⊥ ≡ β → 1 and l 
 1.

[Hint: The following results from the theory of Bessel functions are
needed:

J2l(2lβ) = 1

π
√

3γ
K1/3(R)

J ′
2l(2lβ) = 1

π
√

3γ 2
K2/3(R)∫ 2lβ

0
J2l(x)dx = 1

π
√

3

∫ ∞

2l/3γ 3
K1/3(t)dt

2K2/3

(
2l

3γ 3

)
−
∫ ∞

2l/3γ 3
K1/3(t)dt =

∫ ∞

2l/3γ 3
K5/3(t)dt]
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Find approximate expressions for the radiated power in the limits
ω/ωc � 1, ω/ωc 
 1 respectively. From (9.69) find an expression for
the synchrotron emissivity in the ultra-relativistic limit.

Establish (9.80)
9.10 Estimate the electron energy needed to produce 4 keV photons assuming a

synchrotron source for X-ray emission from the Crab nebula.
9.11 Consider a cosmic radio source in isolation so that its population of high-

energy electrons is not renewed. Suppose the magnetic field present is
estimated at 2 × 10−9 T and use this to show that the energy ε of the
electrons contributing to radio emission at 1 m wavelength is of the order
of 1 GeV.

Show that the lifetime of the radiating electrons is proportional to ε−1

and estimate this lifetime for 1 GeV electrons. How would you expect the
radio spectrum to change with time for this source?

9.12 The non-relativistic equation of motion of a charge in an electromagnetic
wave is

mv̇ = eE + ev × B + e2

6πε0c3
v̈

where the last term is a small correction to the Lorentz equation
due to radiation. Show that the time average of the damping force is
(6πε0)

−1(e2 E0/mc2)2 where E0 is the wave amplitude.
9.13 Show that in an equilibrium plasma for which the electron distribution

function is Maxwellian, the line profile of Thomson scattered radiation is
determined by the form factor

S(k, ω) = n

k

(
m

2πkBTe

)1/2

exp

[
− mω2

2k2kBTe

]

Use the experimentally determined half-width from Fig. 9.13 to compute
the plasma electron temperature.

9.14 Establish the Salpeter expression for the form factor in (9.100).
9.15 From a consideration of the form factor in a plasma in which an electron

drift relative to the ions is present, show that the effect of the drift is to
introduce an asymmetry into the ion feature. Interpret this result.

9.16 In Section 2.13.1 considerations of the relativistic dynamics of an electron
in an electromagnetic field showed that the electron described a figure-of-
eight trajectory. Confirmation of this has been provided in an elegant ex-
periment in which non-linear Thomson scattering was observed by Chen,
Maksimchuk and Umstadter (1998). Non-linear Thomson scattering gen-
erates harmonic spectra with characteristics that distinguish them from a
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Fig. 9.20. Angular pattern of second-harmonic Thomson scattered light (after
Chen, Maksimchuk and Umstadter (1998)).

number of other possible harmonic sources. The polar diagram in Fig. 9.20
shows the dependence of the intensity of second harmonic light (in arbi-
trary units) on azimuthal angle φ in degrees. Circles denote experimental
data points and the solid (dashed) lines show predicted dependences for
zero drift and a drift velocity vd = 0.2c respectively. Read the paper by
Chen, Maksimchuk and Umstadter for a full discussion of their results.



10

Non-linear plasma physics

10.1 Introduction

Linearization gives rise to such simplification that in many cases it is pushed to its
limits and sometimes beyond in the hope that by understanding the linear problem
we may gain some insight into the non-linear physics. Perhaps the clearest example
of the progress that can be made by analysing linearized equations is in cold plasma
wave theory, but linearization, in one form or another, is almost universally applied.
For instance, the drift velocities of particle orbit theory are of first order in the ratio
of Larmor radius to inhomogeneity scale length. In kinetic theory it is invariably
assumed that the distribution function is close to a local equilibrium distribution.

A question of fundamental importance is then, ‘How realistic and relevant are
linear theories?’ Some problems are essentially non-linear in that there is no useful
small parameter to allow linearization. Examples of these are sheaths, discussed in
Chapter 11, and shock waves. Primarily, our intention is to address the subsidiary
question: ‘Given that there is a valid linear regime, to what extent need we concern
ourselves with non-linear effects?’

Of course, if the linear solution predicts instability then we know that, in time, it
will become invalid because the approximation on which the linearization is based
no longer holds good. In such cases the aim might be to identify and investigate
non-linear processes that come into play and quench the instability. However, an
unstable linear regime is emphatically not a pre-requisite for an interest in non-
linear phenomena. There are many situations in which the linear equations give
only stable solutions but the non-linear equations are secular, i.e. under certain
conditions some solutions grow with time. Physically, this comes about because
the non-linear coupling of stable, linear modes generates new modes and, if these
are natural modes of the system, resonant growth of their amplitudes may occur.
Such parametric amplification is widespread throughout physics and engineering
and is of particular interest in plasmas, which are well endowed with natural modes.

376
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In each case, whether the non-linear saturation of instabilities or the growth of
parametric waves, there are two distinct time scales, that of the rapid oscillation of
the initial, linear waves and that of the development of non-linear effects. We shall
see that this is crucial to the construction of an analytic non-linear theory. In those
cases where linear instability, with growth rate γL, leads on to non-linear effects,
these develop at a rate γNL � γL. Typically, γNL ∼ (W/nkBT )γL, where W is the
energy density associated with the unstable mode.

Computer simulations play an indispensible role in the study of non-linear
plasma physics. Since the complexities of non-linear equations severely limit the
scope for analytical progress, the usual procedure is to isolate as far as possible the
particular non-linear phenomenon one wishes to investigate by suppressing effects
which complicate the analysis but do not contribute significantly to the dominant
non-linear behaviour. In the main this can be done by averaging over the fast time
scale but occasionally it also involves identifying the dominant non-linear term
and dropping all others. Progress can sometimes be made by resorting to model
equations. Parametric amplification is one example where this has been done to
good effect, the model equations serving for an entire class of problems in different
branches of physical science.

Our approach in this chapter, therefore, is mainly illustrative. Various non-linear
processes are discussed on the basis of the simplest credible mathematical model
capable of representing the essential physics of the process.

10.2 Non-linear Landau theory

Linear theories are based on the assumption that perturbations of a steady state
or equilibrium are infinitesimally small so that all but the linear terms may be
ignored. In practice, of course, all perturbations have finite amplitude, however
small, and one may begin a non-linear investigation by asking what would be the
consequences of recognising this. Assuming small, but finite, perturbations and
keeping quadratric terms in a perturbation expansion is the basis of weakly non-
linear analysis and, for the most part, this will be our approach to the discussion
of non-linear plasma phenomena. Various linear theories will be extended in this
way into the non-linear regime and we begin with Landau’s solution of the Vlasov
equation.

10.2.1 Quasi-linear theory

As its name suggests, quasi-linear theory is a kind of halfway stage between linear
and non-linear theory and was first developed to deal with the problem which we
met when discussing the Landau solution of the Vlasov equation. What happens
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if some waves experience Landau growth rather than damping? Obviously, wave
amplitudes cannot grow indefinitely since the total energy is limited. How then is
the growth curtailed? As energy is transferred from particles to waves the distri-
bution of particle velocities must be modified in some way by this growth in wave
amplitude. It is just this modification of the distribution function that we seek to
describe by quasi-linear theory.

We illustrate this approach by means of the simplest possible problem of unsta-
ble, electrostatic waves in an unmagnetized plasma in which we treat the ions as a
uniform neutralizing background. We assume that the velocity space modification
of the electron distribution function f (r, v, t) takes place on a much slower time
scale than the fluctuations of the growing waves so that we may separate f into
two parts, a slowly varying f0 which is the value of f when averaged over the
fluctuations, and a rapidly varying f1. For simplicity, we assume also that f0 is
spatially uniform so that

f (r, v, t) = f0(v, t)+ f1(r, v, t)

The Vlasov equation then reads

∂ f0

∂t
+ ∂ f1

∂t
+ v · ∂ f1

∂r
− e

m
E · ∂ f0

∂v
− e

m
E · ∂ f1

∂v
= 0 (10.1)

and Poisson’s equation becomes

∇ · E = − e

ε0

∫
f1 dv (10.2)

the electron charge arising from the slowly varying f0 being neutralized by the ion
charge.

Averaging (10.1) over the rapid fluctuations gives

∂ f0

∂t
= e

m

〈
E · ∂ f1

∂v

〉
(10.3)

where 〈X〉 denotes the average value of X ; all other terms are linear in f1 and
therefore have zero averages. This is the equation describing the slow evolution of
f0. Now subtracting (10.3) from (10.1) we find

∂ f1

∂t
+ v · ∂ f1

∂r
− e

m
E · ∂ f0

∂v
= e

m

(
E · ∂ f1

∂v
−
〈
E · ∂ f1

∂v

〉)
(10.4)

which describes the rapid variation of f1. If saturation of the instability takes place
in such a way that f1 remains small compared with f0 we might plausibly argue
that in these equations only the non-linear term on the right-hand side of (10.3)
need be kept since this determines the rate of change of f0 whilst those on the
right-hand side of (10.4) may be neglected compared with the linear terms on the
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left-hand side. It is in this sense that the theory is quasi-linear; (10.4) is linearized
but not (10.3). Thus, we replace (10.4) by

∂ f1

∂t
+ v · ∂ f1

∂r
− e

m
E · ∂ f0

∂v
= 0 (10.5)

This is very like the linearized Vlasov equation (7.16), but not quite the same
because here f0 is time-dependent. However, since the rate of change of f0 is slow
compared with f1 we may treat f0 as constant in solving the coupled equations
(10.2) and (10.5) and apply the results of Section 7.3.

The Fourier transform of the electric field E(k, t) is given by (7.28) where R j is
the residue of the pole at p = p j in the integral (7.26). For simplicity, we assume
that there is only one solution of the dispersion relation (7.27) which gives rise to
a pole with �p > 0 and that this occurs at

p = −iω = −iω0 = −iωr + γ

Then all other terms in (7.28) are transient and may be dropped. Evaluating the
residue using L’Hôpital’s rule we find

E(k, t) = iee−iω0t k
ε0k2(∂ε(k, ω)/∂ω)ω0

∫
f1(k, v, 0)

(ω0 − k · v)
dv (10.6)

where, since it is more convenient to work in terms of vector variables, we have
replaced E and u using E = Ek/k and ku = k · v. Also, using the transformation
p → −iω = −iω0 we have expressed the Laplace transform of the plasma
dielectric function D(k, p) in terms of its Fourier transform

ε(k, ω0) = 1 + e2

ε0mk2

∫
k · ∂ f0/∂v
(ω0 − k · v)

dv = 0 (10.7)

which determines ω0(k, t).
We did not display f1 explicitly in Section 7.3 but it is obtained from (7.22) as

f1(k, v, p) = 1

p + ik · v

[
eE(k, p)

m
· ∂ f0

∂v
+ f1(k, v, 0)

]
(10.8)

Inverting the Laplace transform then gives contributions from the pole at p =
−ik · v as well as that at p = −iω0. However, the former varies like exp(−ik · vt)
and as t → ∞ it becomes highly oscillatory in k and v space. This term is called
the ballistic term and we shall return to it later. For the moment we note that since
the inverse Fourier transform involves an integral over k its contribution vanishes
as t → ∞ and so we drop it. Here again, therefore, we keep only the term arising
from the pole at p = −iω0 with the result

f1(k, v, t) = ieE(k, t)

m(ω0 − k · v)
· ∂ f0

∂v
(10.9)
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Substitution of (10.6) and (10.9) in (10.3) then gives the evolution equation for f0

in the form of a diffusion equation

∂ f0

∂t
= ∂

∂Vi
Di j

∂ f0

∂v j
(10.10)

where

Di j = ie2

m2V

∫
dk〈Ei (−k, t)E j (k, t)〉

(ω0 − k · v)
(10.11)

is the diffusion coefficient and V is the volume of the plasma. In deriving (10.10)
we have taken the spatial average of the right-hand side since the left-hand side is
assumed independent of r. Also, although ω0 is time-dependent it is only slowly
varying as a function of f0 and so has been taken outside the time average over the
rapid fluctuations.

Defining the spectral energy density of the electrostatic field by

E(k, t) = 1

V
〈E(−k, t) · E(k, t)〉 = 1

V
〈E∗(k, t) · E(k, t)〉 (10.12)

and noting that
∂E(k, t)

∂t
= −iω0E(k, t)

it follows that
∂E(k, t)

∂t
= 2γ E(k, t) (10.13)

Thus, the coupled equations of quasi-linear theory are (10.10), (10.13) and (10.6).
From (10.13) we see that for γ (k, t) > 0 the wave amplitude grows thereby
increasing the diffusion coefficient which in turn decreases the slope of f0 and
thus reduces γ .

This may be illustrated for the one-dimensional ‘bump-on-tail’ plasma distribu-
tion. In this case (10.10) is

∂ f0

∂t
= ∂

∂v

ie2

m2

∫
dkE(k, t)

(ω0 − kv)

∂ f0

∂v

In the limit γ → 0 we may evaluate the integral over k in the same way as the
integral over u was evaluated in Section 7.3. The principal part vanishes since it is
odd in k and iπ times the residue at the pole gives

∂ f0

∂t
= πe2

m2

∂

∂v

E(ω0/v, t)

v

∂ f0

∂v
= ∂

∂v
A(v)E(ω0/v, t)

∂ f0

∂v
(10.14)

where A(v) = (πe2/m2v). Also since γ ∝ ∂ f0/∂v we may write (10.13) as

∂E(ω0/v, t)

∂t
= B(v)E(ω0/v, t)

∂ f0

∂v
(10.15)



10.2 Non-linear Landau theory 381

Fig. 10.1. Illustration of quasi-linear evolution of f0 for the bump-on-tail instability.

where A and B are both positive. Combining (10.14) and (10.15) we have

∂ f0

∂t
= ∂

∂v

(
A

B

∂E
∂t

)

i.e.

∂

∂t

[
f0 − ∂

∂v

(
AE
B

)]
= 0

Then if E is negligible at t = 0

∂

∂v

(
AE
B

)
= f0(v, 0)− f0(v, t)

We seek asymptotically steady state solutions, that is ∂E/∂t , ∂ f0/∂t → 0 as
t → ∞. If ∂E/∂t = 0, from (10.15) either E = 0 or ∂ f0/∂v = 0. Suppose
∂ f0/∂v = 0 for v0 < v < v1 and E = 0 for all other v. Then for v0 < v < v1,
f0(v,∞) is constant and for all other v, f0(v,∞) = f0(v, 0). These results are
shown schematically in Fig. 10.1. The unstable region is initially defined by the
range of v for which f ′

0 > 0 but as the diffusion progresses this region expands
since f ′

0 decreases within the unstable range but becomes positive just outside it.
The instability is quenched when f0 is constant across the final range of the wave
spectrum between v0 and v1. The increase in energy in the waves is compensated
for by the net loss of energy of the particles; faster particles in the initial bump have
been replaced by slower particles filling the initial trough.
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Quasi-linear theory has been widely used with some success despite the arbi-
trariness of its assumptions and some lack of consensus on the conditions for its
validity.

10.2.2 Particle trapping

Another important wave–particle effect that leads to the quenching of instabilities
is particle trapping. It comes about because waves have finite amplitudes and
particles with insufficient energy to surmount the wave peaks oscillate back and
forth in the wave troughs.

To investigate this we consider a single wave and assume that its amplitude
grows or decays very slowly compared with the rate at which the wave oscillates.
Then, in a frame of reference moving with the wave speed ω/k, the particles see a
constant wave profile which is a function of x only. The equation of motion of an
electron is

mẍ = −eE(x) = e
dφ(x)

dx
(10.16)

where φ(x) is the electrostatic potential. A first integral is the energy equation

1

2
mẋ2 − eφ(x) = E0

where E0 is a constant equal to the total energy of the electron. Clearly, if
E0 > −eφ(x) for all x the kinetic energy is positive for all x and the electron
is untrapped. On the other hand, all electrons with values of E0 below the wave
peaks are trapped and oscillate in the wave troughs between the points at which
E0 = −eφ(x). The energy diagram and the phase space trajectories are shown in
Fig. 10.2; in the laboratory frame the trajectories move to the right with the wave
speed ω/k. Note that it is the resonant electrons, those with v ≈ ω/k, that are
trapped.

Electron trapping imposes a severe restriction on the validity of linear Landau
damping theory which, as we saw in Chapter 7, is equivalent to integration over
unperturbed orbits, namely the straight line trajectories: x(t) = x(0) + v(0)t .
The trajectories of the trapped (resonant) electrons have a superimposed oscillatory
motion governed by (10.16) and if E(x) = Ẽ sin kx 	 Ẽkx for the most strongly
trapped electrons (near the bottom of the potential well) we have

mẍ = −mω2x = −eẼkx

giving ω2 = eẼk/m ≡ ω2
B, where ωB is called the bounce frequency. Usually

ωpe 
 ωB but the Landau damping decrement, given by (7.37) and denoted here
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Fig. 10.2. Illustration of particle trapping by finite amplitude waves. The upper figure
shows the phase space trajectories and the lower figure the energy diagram.

by γL, decreases exponentially for long wavelength plasma oscillations. Clearly, if
ωB > γL the effect of electron trapping will come into play before appreciable lin-
ear Landau damping takes place. This produces, as discussed by Davidson (1972),
a non-monotonic decay which is shown schematically in Fig. 10.3. The wave
energy decays according to linear Landau theory for t < 2π/ωB, releasing some of
the trapped particles, and then oscillates with a frequency of the order of ωB. This
oscillation frequency increases with t and for t 
 2π/ωB the wave energy tends to
a constant value which is lower by a fraction of order γL/ωB times its initial value.
The trapped electrons, by continually exchanging energy with the wave, keep it
from collapsing and produce the oscillations in the wave energy. This damping
is clearly a non-linear process and, although physically quite distinct from linear
Landau damping, is often referred to as non-linear Landau damping.
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Fig. 10.3. Illustration of non-linear Landau damping. If ωB > γL electron trapping occurs
before the wave has decayed significantly and the fractional loss of wave energy is limited
to O(γL/ωB).

The theory is equally applicable to the case of growing waves. In this case there
is linear Landau growth followed by oscillation and asymptotic approach to a wave
energy which is a fraction of order γL/ωB higher than its initial value.

10.2.3 Particle trapping in the beam–plasma instability

We turn next to a consideration of the non-linear phase of the beam–plasma insta-
bility (BPI) analysed in its linear phase for the weak-beam case in Section 6.5.2.
This showed that three of the four solutions to the linear dispersion relation are of
the same magnitude for kvb/ωp 	 1. The maximum linear growth rate (6.121) is

γmax =
√

3

2

(
ω2

pb

2ω2
p

)1/3

ωp (10.17)

and the frequency of the growing perturbations is

ω = ωp


1 − 1

2

(
ω2

pb

2ω2
p

)1/3

 ≡ ωp(1 − δ) (10.18)

Restricting ourselves to the weak-beam limit makes possible a quasi-linear exten-
sion to the linear result (Drummond et al. (1970), O’Neil et al. (1971), Gentle and
Lohr (1973)). As in the linear model we consider only electron dynamics but now
we need to bear in mind that doing so will in general impose restrictions on the
validity of the non-linear result.
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In the linear regime it is straightforward to show that zero- and first-order vari-
ables are related by

nb1

nb0
= −1

δ

vb1

vb0

vb1

vb0
= −1

δ

vp1

vb0

which establishes the ordering∣∣∣∣vp1

vb0

∣∣∣∣�
∣∣∣∣vb1

vb0

∣∣∣∣�
∣∣∣∣nb1

nb0

∣∣∣∣ (10.19)

Thus, even if the beam density perturbation is not itself small, the changes in both
beam and plasma electron velocities are smaller in order than the beam density
perturbation. We saw in Section 6.5.2 that the BPI spectrum was relatively narrow
so that we may approximate the wave potential φ1 by a monochromatic sinusoidal
wave form,

φ1(x, t) = φ1 cosωp

[
x

vb0
− (1 − δ)t

]
(10.20)

even in the non-linear phase, at least until the stage at which significant numbers
of beam electrons are trapped by the wave. In the wave frame ω/k = vb0(1 − δ),
the beam electrons experience the potential φ1 = φ̄ cos kx , where φ̄ is the time-
averaged amplitude. The trajectory of a test electron (labelled j) in this potential is
determined by energy conservation from

1

2
mv2

j − eφ̄ cos kx j = c j (10.21)

An electron for which c j = −eφ̄ is trapped at the bottom of the potential well
whereas one for which c j = eφ̄ is on the border between trapped and free electrons.
The critical escape velocity is vc = (4eφ̄/m)1/2. Thus in the quasi-linear model
some beam electrons will become trapped once the potential has grown to a level
such that �v = vb0 − ω/k = δvb0 = vc. Then

φ̄tr = m

4e
(�v)2 (10.22)

with corresponding energy density at time t = t1, say

W (t1) = ε0

4
k2φ̄2

tr 	 2−31/3

(
ω2

pb

ω2
p

)1/3 [1

2
nb0mv2

b0

]
(10.23)

Note that this is a small fraction of the beam kinetic energy density. Growth of
the wave continues until most of the beam electrons have been trapped. By this
stage, at t = t2, the beam electrons have lost kinetic energy 1

2 nb0m[(vb0 + �v)2−
(vb0 − �v)2] ∼ 2nb0mvb0�v. Since (10.19) guarantees that the plasma electron
dynamics is still essentially linear, to a good approximation we may assign one
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Fig. 10.4. Electron phase space showing trapped and free electron trajectories.

half of the kinetic energy lost to the oscillations and the other half to electrostatic
field energy. Then at time t = t2 the average field energy density is

W (t2) 	 nb0mvb0�v = 2−1/3

(
ω2

pb

ω2
p

)1/3 [
1

2
nb0mv2

b0

]
(10.24)

Comparing (10.23) with (10.24) we see that W (t2) = 210W (t1). Note that for
nb0/n0 = 0.015, only 20% of beam kinetic energy is converted to field energy.
As particle velocities bounce back up, field energy is reconverted into kinetic
energy but since the potential well is not parabolic, particles oscillate at different
frequencies. In the phase space representation in Fig. 10.4 electrons rotate round
equipotential contours and undergo phase mixing with the result that the position
of the beam electrons in phase space is smeared out after some rotations. The field
oscillations die out and the field energy settles at a value that is half the difference
between the initial beam energy and that of the smeared-out distribution, i.e.

Wf(t 
 t2) = 2−4/3

(
ω2

pb

ω2
p

)1/3 [
1

2
nb0mev

2
b0

]

as illustrated in Fig. 10.5.
This simple picture does not provide an accurate representation of beam dy-

namics. Figure 10.4 illustrates the velocity modulation of the beam so that even
when vc = �v trapping is not complete. One can show that when trapping occurs
the beam velocity modulation vb1 = �v which in turn implies that nb1/nb0 = 1;
in other words the beam electron dynamics is seriously non-linear, with bunch-
ing well developed. The bunches are trapped in the potential well and rotate in
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Fig. 10.5. Electrostatic field energy as a function of time. The damping time corresponds
to the time characterizing the smearing out of particles in phase space.

Fig. 10.6. Experimental contour plots of the electron distribution in phase space. At τ =
2, 4 the central line represents the maximum electron density contour, the lines on either
side corresponding to the half-maximum value. At later times, the inner contour represents
maximum density. The phase reference is arbitrary and differs for each frame (after Gentle
and Lohr (1973)).
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phase space. Overall the wave energy displays oscillatory behaviour as shown in
Fig. 10.5.

The main predictions of the non-linear phase of BPI were confirmed in ex-
periments by Gentle and Lohr (1973) measuring maximum wave amplitude,
monochromaticity of the unstable mode and its harmonic content. Measured con-
tour plots of the electron distribution in phase space are shown in Fig. 10.6.

10.2.4 Plasma echoes

A quite remarkable prediction of non-linear Landau theory is the existence of what
are called plasma echoes. There is no dissipation in a collisionless plasma and
therefore no increase in entropy. Consequently, although a wave may effectively
disappear as its amplitude decreases through Landau damping, some trace of it
remains in the perturbed distribution function f1. This trace lies in the terms that
we discarded in quasi-linear theory on the grounds that they were transient. Specif-
ically, we noted that, on taking the Laplace transform of (10.8), the ballistic term
varies like exp(−ik · vt) but we dropped it because it becomes highly oscillatory
in k · v as t → ∞ and therefore makes a negligible contribution to an integral over
k or v. This is called phase mixing. Note, however, that the ballistic term itself does
not decay; it is this term that carries the information about the initial perturbation
that produced the Landau damped wave.

Now the idea behind the plasma echo is to create two Landau damped waves
at different times t1 and t2 such that at a later time t3 a third wave (the echo) may
arise from their non-linear interaction. At time t the ballistic term from wave 1
with wavenumber k1 varies like exp(−ik1 · v(t − t1)) and similarly for wave 2 like
exp(−ik2 · v(t − t2)). If we now resurrect the second-order terms on the right-hand
side of (10.4), which were neglected in quasi-linear theory, we get contributions
varying like exp(−i[k1 · v(t − t1)− k2 · v(t − t2)]). Choosing k1 and k2 to be in
the same direction we see that the exponent vanishes at

t = t3 = k1t1 − k2t2
k1 − k2

Consequently, when the velocity integral in (10.2) is performed at t = t3 there is
no phase mixing and the echo wave appears.

This effect, which can be discussed in spatial terms also, generating the waves
at separate points in a plasma column and observing the echo at a third point
further down the column, has been demonstrated experimentally by Wong and
Baker (1969).
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10.3 Wave–wave interactions

So far our discussion of non-linear effects has been largely by extension of the
Landau theory into the non-linear regime. We began with wave–particle interac-
tions and with the discussion of plasma echoes we have moved on to wave–wave
interactions though, in this case, one which is realized via the resonant particles.
Another example of this kind is induced scattering in which the resonant particles
interact with the beat wave of two plasma waves. It is interesting to note the
sequence of resonance conditions. For linear Landau damping (or growth) we have

ω = k · v

and this was also the resonance condition for particle trapping where only one
wave is involved. The resonance condition for induced scattering is obtained by
substituting the relevant ω and k for the beat wave. When this is between two
plasma waves, denoted by frequencies and wavenumbers, (ω1, k1) and (ω2, k2),
we have

ω1 − ω2 = (k1 − k2) · v

If the first wave is driven with a finite amplitude the second can arise through the
non-linear interaction with the resonant particles and hence the description of this
process as induced scattering. Since the beat wave frequency for Langmuir wave
scattering is low (ω1, ω2 ≈ ωpe, ω1 − ω2 � ωpe) the scattering is off the ions and
the process is adequately described by ion Landau theory combined with a fluid
description of the electron waves as discussed, for example, in Nicholson (1983).

The next stage in this progression is to consider direct wave–wave interactions.
It is often the case that wave–particle coupling is sufficiently weak that it is in-
significant and yet plasmas can support so many waves that if one wave (ω0, k0) is
propagating and another natural mode (ω1, k1) spontaneously arises, resonant non-
linear coupling may give rise to the beat wave (ω2, k2). The resonance conditions
for this are

ω0 = ω1 + ω2 (10.25)

k0 = k1 + k2 (10.26)

and the waves are said to form a resonant triad. Of course, we could go on in this
way and have four or more waves in resonance but since this involves cubic or
higher order terms these are less likely to be of significance than resonant triads.

Derivation of the equations describing non-linear wave coupling may be via
the Vlasov–Maxwell equations or the two-fluid wave equations and may treat the
waves as coherent or take ensemble averages of systems with many waves having
random phases (weak turbulence analysis); for a thorough discussion of this topic
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see Davidson (1972). Whatever the analysis, the end product is a set of equations
of the general form

∂Aα(k, t)

∂t
=
∫

dk dk′ dk′′δ(k − k′ − k′′)Kαβγ (k, k′, k′′)

×Aβ(k′, t)Aγ (k′′, t)ei[ωα(k)−ωβ(k′)−ωγ (k′′)]t (10.27)

where Aα,β,γ are the wave amplitudes and Kαβγ is the interaction kernel for the
triplet (α, β, γ ). In fact, equations with this structure arise in many branches of
physics and engineering and it is only the kernel Kαβγ which varies according
to the specific non-linear wave coupling under consideration. To avoid a lot of
heavy algebra therefore, we shall derive the equations for a simple system of three
coupled harmonic oscillators. In other words, we model the waves by harmonic
oscillators and the plasma as the medium which supports them and allows their
interaction.

If C is the (constant) coupling coefficient for the three oscillators, the equations
of motion are

ẍ0 + ω2
0x0 = −Cx1x2

ẍ1 + ω2
1x1 = −Cx0x2

ẍ2 + ω2
2x2 = −Cx0x1


 (10.28)

In the linear approximation the solutions are

x j = 1

2

(
A j e

iω j t + A∗
j e

−iω j t
)

( j = 0, 1, 2)

and if the coupling is weak we may expect the non-linear solutions to be of the
form

x j = 1

2

(
A j (t)e

iω j t + A∗
j (t)e

−iω j t
)

(10.29)

where the amplitudes A j are now slowly varying functions of t such that∣∣∣∣ Ȧ j

A j

∣∣∣∣� ω j (10.30)

Substituting (10.29) in (10.28) we get for the first member

(A0 + 2iω0 Ȧ0)+ ( Ä∗
0 − 2iω0 Ȧ∗

0)e
−2iω0t

= −C

2
(A1eiω1t + A∗

1e−iω1t)(A2eiω2t + A∗
2e−iω2t)e−iω0t

and, when we average over the fast time scale, phase mixing gets rid of the second
term on the left-hand side and all terms on the right-hand side except the one whose



10.3 Wave–wave interactions 391

exponent vanishes because of the resonance condition (10.25). In view of (10.30)
we may drop the Ä0 term as well, leaving

Ȧ0 = iC

4ω0
A1 A2

The corresponding equations for the second and third members of (10.28) are

Ȧ1 = iC

4ω1
A0 A∗

2

and

Ȧ2 = iC

4ω2
A0 A∗

1

It is convenient to re-define the amplitudes by

a j = A jω
1/2
j (10.31)

to get the more symmetric set of equations

ȧ0 = i K a1a2

ȧ1 = i K a0a∗
2

ȧ2 = i K a0a∗
1


 (10.32)

where

K = C/4(ω0ω1ω2)
1/2 (10.33)

is the common coupling coefficient.
Although the details of the derivation of the equation set (10.32) for the non-

linear wave coupling in a plasma are more complicated, the method is the same.
The condition (10.26) on the wavenumbers, expressed by the delta function in
(10.27), arises because the waves have spatial as well as temporal harmonic varia-
tion, exp i(k · r − ωt), and is necessary to avoid phase mixing in space.

From (10.25) and (10.32) it is easily shown that

d

dt

(
ω0|a0|2 + ω1|a1|2 + ω2|a2|2

) = 0 (10.34)

or
d

dt

(|A0|2 + |A1|2 + |A2|2
) = 0

which expresses the conservation of energy since wave energy density is propor-
tional to the square of the amplitude.

Directly from (10.32) we get

−d|a0|2
dt

= d|a1|2
dt

= d|a2|2
dt
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or

− 1

ω0

d|A0|2
dt

= 1

ω1

d|A1|2
dt

= 1

ω2

d|A2|2
dt

(10.35)

which are the Manley–Rowe relations, first discussed in the context of parametric
amplification in electronics. They show the rates at which energy is transferred
between the waves. An exact solution of (10.32) is obtainable in terms of elliptic
functions showing the periodic nature of the interaction.

Generalizations of the theory may be introduced, the most important of which
is wave damping. This is done by adding a term ν j a j to the left-hand side of the
a j equation in (10.32), where ν j is the linear damping rate of the j th wave. As
discussed further below, this introduces a threshold for the spontaneous excitation
of a natural mode since there are now competing effects and the energy in the
excitation must exceed that lost by damping.

Another important generalization is to allow for spatial variation of the wave
amplitudes by replacing the time derivative d/dt by the convective derivative
(∂/∂t +v j ·∇), where v j is the group velocity of the j th wave. This means that the
interaction is now between wave packets rather than monochromatic waves, adding
a touch of reality. Other extensions of the theory, which we investigate below, allow
for frequency and wavenumber mismatch.

10.3.1 Parametric instabilities

The interest of plasma physicists in wave–wave interactions has arisen in the con-
text of plasma heating and particularly in the field of laser–plasma interactions.
The laser beam is a large amplitude, transverse, electromagnetic wave being driven
through the plasma and is capable, by means of resonant three-wave coupling, of
transferring its energy to two other waves. Such a process in which natural modes
grow at the expense of the large amplitude wave, usually referred to as the pump
wave, is known as a parametric instability.

In this class of three-wave interactions we distinguish between the pump wave
(ω0, k0) and the so-called decay waves which are both small amplitude. Thus, from
(10.32) to first order, it follows that a0 is constant and we investigate the growth
of a1 and a2. To find the threshold condition, damping, which may be Landau or
collisional, is included, so the equations are

ȧ1 + ν1a1 = i K a0a∗
2

ȧ2 + ν2a2 = i K a0a∗
1

}
(10.36)

where ν1 and ν2 are both positive. Taking the complex conjugate of the second
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equation in (10.36) and trying a solution ∝ eαt we get

(α + ν1)a1 − i K a0a∗
2 = 0

i K a∗
0a1 + (α + ν2)a2 = 0

for which there is a non-trivial solution if

(α + ν1)(α + ν2)− K 2|a0|2 = 0 (10.37)

Separating real and imaginary parts of this equation we see that α must be real and
has a positive root if

K 2|a0|2 > ν1ν2 (10.38)

This is the threshold condition for the instability stating that the combination of
the energy in the pump wave and the strength of the non-linear coupling must be
sufficient to overcome the damping of the decay waves.

Conditions (10.25) and (10.26) represent perfect matching. In practice we need
to explore the consequences of allowing a small frequency mismatch such that

ω0 − ω1 − ω2 = �ω

where |�ω| is very much smaller than any of the wave frequencies. Then instead
of (10.36) we have

ȧ1 + ν1a1 = i K a0a∗
2ei�ωt

ȧ2 + ν2a2 = i K a0a∗
1ei�ωt

}
(10.39)

where the residual factor ei�ωt is a slow variation like a1(t) and a2(t) and is best
dealt with by absorbing it into the amplitudes by defining ã j = a j e−i�ωt/2. Now
(10.39) becomes

dã1/dt + (i�ω/2 + ν1) ã1 = i K a0ã∗
2

dã2/dt + (i�ω/2 + ν2) ã2 = i K a0ã∗
1

}
(10.40)

and proceeding as for (10.36) it is easily verified that the resulting auxiliary equa-
tion replacing (10.37) is

(α + ν1 + i�ω/2)(α + ν2 − i�ω/2)− K 2|a0|2 = 0

This equation now has complex roots but at threshold (�α = 0), on separating real
and imaginary parts, we find

K 2|a0|2 = ν1ν2 + ν1ν2(�ω)
2

(ν1 + ν2)2
(10.41)

showing by comparison with (10.38) the increase in pump wave energy required to
overcome frequency mismatch.
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Fig. 10.7. Dispersion relations for transverse electromagnetic, Langmuir and ion acoustic
waves.

Wavenumber mismatch has a similar effect reducing growth rate and increasing
the threshold for instability. These are important considerations since plasmas,
especially laser-produced plasmas, are highly inhomogeneous so the relationship
between ω and k changes as a dispersive wave travels through the plasma. Con-
sequently, the resonant triad conditions between the pump and decay waves will
be satisfied only in some restricted region and the parametric instability is likewise
restricted. These effects are examined in the following chapter. Here we present
a brief qualitative discussion of four parametric instabilities important in laser–
plasma interactions.

We consider an unmagnetized plasma, with Te 
 Ti, irradiated by an intense
laser beam. In this case the three-wave coupling takes place between various com-
binations of the transverse, electromagnetic pump wave for which

ω2
0 = ω2

T = ω2
p + k2

Tc2 (10.42)

the longitudinal, electrostatic electron plasma (or Langmuir) wave

ω2
L = ω2

p + k2
LV 2

e (10.43)

and the longitudinal, ion acoustic (or sound) wave

ω2
S = k2

Sc2
s (10.44)

These dispersion relations were derived in Chapter 6 and are sketched in Fig.
10.7. We consider only positive frequencies but k values may be of either sign.
The decay waves, labelled 1 and 2, may be any of the pairs

(1, 2) = (L , S), (L1, L2), (T
′, S), (T ′, L)
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Fig. 10.8. Frequencies and wavenumbers for parametric decay instability.

Fig. 10.9. Frequencies and wavenumbers for two plasmon decay instability.

where the second possibility has two Langmuir waves and the third and fourth
involve a second (scattered) transverse wave. These are the only three-wave de-
cays allowed in an unmagnetized plasma. Figures 10.8–10.11 illustrate the four
cases.

The parametric decay instability (T → L + S) has ωT ≈ ωL since ωS � ωL.
Also, to avoid strong Landau damping of the Langmuir wave (low threshold) we
need ωL ≈ ωp. Thus, the instability occurs near the critical surface (ωT ≈ ωp).
Another consequence of the approximation (ωT ≈ ωL) in a non-relativistic plasma
is that |kT| � |kL| and hence that kL ≈ −kS. Note that although kS and kL are
almost antiparallel they cannot be exactly so because strong coupling requires the
electric field of the transverse wave ET to be closely aligned to kS and kL and so kT

must be approximately perpendicular to them. Enhanced energy absorption results
from this instability because the laser energy goes into two plasma waves which
propagate only within the plasma and therefore cannot leave it.



396 Non-linear plasma physics

Fig. 10.10. Frequencies and wavenumbers for stimulated Brillouin scattering.

Fig. 10.11. Frequencies and wavenumbers for stimulated Raman scattering.

For the two plasmon decay instability (T → L1 + L2) the same argument about
avoiding Landau damping for a low threshold means that ωL1 ≈ ωL2 ≈ ωp and
hence ωT ≈ 2ωp. It follows that this instability occurs around quarter-critical
density. Here again strong coupling requires kL1 ≈ −kL2 and is maximized
when kT makes angles of approximately π/4 and 5π/4 with kL1 and kL2 . En-
hanced energy absorption results for the same reasons as for the parametric decay
instability.

In contrast with the previous cases both of the scattering instabilities may be one
dimensional in the sense that the k vectors can all be collinear. From Fig. 10.10
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we see that for stimulated Brillouin scattering (T → T ′ + S), kT′ is necessarily
in the opposite direction to kT so that the scattered transverse wave takes energy
back out of the plasma. Furthermore, since ωS � ωT, it follows from (10.35) that
energy from the pump wave goes overwhelmingly into the transverse wave and
not the plasma wave. This instability is therefore very detrimental to laser energy
absorption by the plasma. The wave matching can occur for any frequencyωT > ωp

and thus the instability may arise anywhere up to the critical surface.
Stimulated Raman scattering (T → T ′ + L) is discussed in more detail in the

next chapter. Since, as before, we require ωL ≈ ωp for low threshold and ωT′ ≥ ωp,
the instability can only occur for ωT ≥ 2ωp, i.e. at and below quarter-critical den-
sity. As for Brillouin scattering, the scattered wave travels in the opposite direction
to the incoming wave and therefore takes energy back out of the plasma. In this
case, however, more of the energy gets into the plasma wave.

Quenching of parametric instabilities may come about as a result of:

(i) depletion of the pump wave to below threshold intensity;
(ii) decay of the daughter waves leading to a cascade of modes;

(iii) particle trapping as the electrostatic decay waves achieve large amplitude.
Trapped particles may damp the wave at a rate greater than the linear
damping; this affects the threshold and may switch off the instability;

(iv) plasma inhomogeneity leading to wavenumber mismatch.

10.4 Zakharov equations

In this section we investigate an important example of the modification of linear
wave propagation by the retention of non-linear terms in the wave equations. The
coupled equations we shall derive were first obtained by Zakharov (1972) using
heuristic arguments to express analytically the physical effects involved in the
coupling.

The problem we wish to study is the interaction of electron plasma and ion
acoustic waves. The first is a high frequency wave dominated by the electron
dynamics and the second a low frequency wave dominated by the ion dynamics.
The role of the non-dominant species is to maintain approximate charge neutrality.
The separation of these waves in linear theory is a direct result of the high ion
to electron mass ratio. On the fast time scale of the electron wave the massive
ions are essentially in static equilibrium. For the ion wave, on the other hand, the
electrons are in dynamic equilibrium in the sense that their inertia is so small
that they respond quickly enough to maintain force balance on the slow time
scale. The coupling of ions and electrons via charge neutrality, however, means
that the ion waves produce, through ion density fluctuations, a small perturbation
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of the electron wave dispersion relation. Likewise, the electron waves influence
the ion waves by the appearance of the ponderomotive force in the force balance
equation.

To find the non-linear interaction of these waves we carry out a two-time scale,
perturbation analysis of the warm plasma wave equations given in Table 3.5. The
procedure is similar to that applied to the Vlasov equation to obtain the quasi-linear
equations in Section 10.2.1. There are two time scales because the electrons can
react to the fields much more rapidly than the massive ions. Electron and field
perturbations, therefore, have fast and slow components which we denote by sub-
scripts f and s, respectively; ion perturbations, on the other hand, have only slow
components denoted by subscript 1.

In equilibrium there are no fields and Zni = ne = n0, say. Even in the perturbed
state, the rapid response of the electrons to the strong Coulomb force maintains
approximate charge neutrality so that Zn1 ≈ ns and u1 ≈ us . Thus, we have

Zni = n0 + Zn1 ≈ n0 + ns (10.45)

ne = n0 + ns + n f (10.46)

ui = u1 ≈ us (10.47)

ue = us + u f (10.48)

Note that the fast time scale perturbations have time dependence of the form
a(t)e−iωt where the amplitude a(t) is slowly varying compared with the fluctu-
ations at frequency ω, that is ∣∣∣∣1a da

dt

∣∣∣∣� ω (10.49)

so that when averaging over the fast time scale the amplitude may be treated as
constant and we have

〈ne〉 = n0 + ns

〈ue〉 = us

}
(10.50)

These equations define the slow perturbations and then (10.46) and (10.48) define
the fast perturbations as

n f = ne − 〈ne〉
u f = ue − 〈ue〉

}
(10.51)

From

q = e(Zni − ne)
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it follows that

qs = e(Zn1 − ns) = ε0∇ · Es (10.52)

q f = −en f = ε0∇ · E f (10.53)

where the total field

E = Es + E f (10.54)

Assuming ions and electrons behave like perfect gases and eliminating the partial
pressures using the adiabatic gas equation, the warm plasma wave equations are

∂nα
∂t

+ ∇(nαuα) = 0 (10.55)(
∂

∂t
+ uα · ∇

)
uα = eαE

mα

− γαkBTα
mαnα

∇nα (10.56)

For the electrons these equations contain non-linear terms neue and ue · ∇ue for
which we need to calculate fast and slow components and we do this using the
same recipe used for the linear terms (10.50) and (10.51). Thus,

(neue)s = 〈neue〉 = 〈(n0 + ns + n f )(us + u f )〉
= (n0 + ns)us + 〈n f u f 〉 (10.57)

(neue) f = neue − 〈neue〉
= (n0 + ns)u f + n f us + (n f u f − 〈n f u f 〉) (10.58)

and

(ue · ∇ue)s = 〈(us + u f ) · ∇(us + u f )〉
= us · ∇us + 〈u f · ∇u f 〉 (10.59)

(ue · ∇ue) f = us · ∇u f + u f · ∇us

+ (u f · ∇u f − 〈u f · ∇u f 〉) (10.60)

We shall not keep all of the non-linear terms in (10.57)–(10.60) but only those
of ‘leading order’. To determine which are leading order terms we assume that
|n f | � |ns | and |us | � |u f |. The first of these assumptions is justified on the
grounds that n f is limited by charge neutrality whereas ns , since it is matched by
Zn1, is not. The second assumption is obvious since us ≈ u1, the ion flow velocity.
Note also that the pressure term in (10.56) is treated as a linear term since we shall
replace nα in the denominator by its equilibrium value.
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With these preliminaries we now proceed to the fast wave analysis for which the
relevant equations are (10.53) and, from (10.55) and (10.56),

∂n f

∂t
+ ∇ · [(n0 + ns)u f

] = 0 (10.61)

∂u f

∂t
= −eE f

me
− γekBTe

men0
∇n f (10.62)

In fact, the only non-linear term retained is the leading order term in (10.58), all
the non-linear terms in (10.60) being negligible compared with ∂u f /∂t in (10.62).
Next, we take the partial time derivative of (10.61), neglect the slow ∂ns/∂t term
and substitute for n f from (10.53) and for ∂u f /∂t from (10.62) to get

∇ ·
{
∂2E f

∂t2
+ (n0 + ns)

[
e2

ε0me
E f − γekBTe

men0
∇(∇ · E f )

]}
= 0

Hence, assuming all perturbations are vanishingly small initially,

∂2E f

∂t2
+ ω2

peE f − γekBTe

me
∇(∇ · E f ) = −ω2

pe

(
ns

n0

)
E f (10.63)

where the (ns/n0) contribution to the pressure term has been dropped.
If, for the moment, we neglect the non-linear term on the right-hand side of

(10.63) and assume E f ∼ exp i(k · r − ωt), we recover the dispersion relation
(6.95) for electron plasma waves

ω2 = ω2
pe + k2γekBTe/me = ω2

pe(1 + γek
2/k2

D)

Thus, (10.63) is the equation for the non-linear development of these waves when
they interact with the slow waves through the slow time scale perturbation in the
electron density. Since electron plasma waves are strongly Landau damped unless
k � kD we may take the fast frequency to be approximately ωpe and write

E f (r, t) = E0(r, t)e−iωpet (10.64)

Substituting (10.64) in (10.63) and neglecting the term in ∂2E0/∂t2 gives

2iωpe
∂E0

∂t
+ γekBTe

me
∇(∇ · E0) = ω2

pe

(
ns

n0

)
E0 (10.65)

This equation for the evolution of the amplitude of the fast wave is the first Za-
kharov equation. To it we must add an equation for the evolution of ns .

This comes from (10.55) and (10.56) for the ions which are to leading order

Z
∂n1

∂t
+ n0∇ · u1 = 0 (10.66)

∂u1

∂t
= eEs

m i
− ZγikBTi

m in0
∇n1 (10.67)
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and the slow time scale equation of force balance for the electrons. In this we
must include the ponderomotive force which was derived in Section 2.14 and
takes account of electron acceleration due to the slow variation in amplitude of
the electric field. Thus, from (2.68) and (10.56) we have

eEs

me
+ γekBTe

men0
∇ns +

(
e

2meωpe

)2

∇|E0|2 = 0 (10.68)

In the ion equations we replace u1 by us , Zn1 by ns , and substitute for Es from
(10.68) to get

∂us

∂t
= −me

m i

(
e

2meωpe

)2

∇|E0|2 − c2
s

n0
∇ns (10.69)

where cs = [(γekBTe + γikBTi)/m i]
1/2 is the ion acoustic speed. Now taking the

partial time derivative of (10.66) and substituting for ∂us/∂t from (10.69) gives(
∂

∂t2
− c2

s ∇2

)
ns = ε0

4m i
∇2|E0|2 (10.70)

which is the second Zakharov equation and, together with (10.65), gives a closed,
coupled pair of equations for E0 and ns .

To understand the physics of this non-linear analysis let us briefly review the
essential steps. We have reduced two sets of equations (10.53), (10.61), (10.62)
and (10.66)–(10.68) to a pair of coupled equations (10.65) and (10.70). We have
retained only one non-linear term in each of these sets, ∇ · (nsu f ) in (10.61) and
the ponderomotive term in (10.68). Without these non-linear terms we recover the
uncoupled linear wave equations for electron plasma waves and ion acoustic waves.
The non-linear coupling takes account of the maintenance of approximate charge
neutrality so that the slow perturbation in ion density must have a matching slow
perturbation in electron density ns ≈ Zn1. This appears as a ‘correction’ to the
electron plasma frequency in (10.63) and subsequently as a moderating term in the
evolution equation (10.65) for the wave amplitude.

Similarly, in the slow wave equations we have allowed for the moderation of Es

caused by the displacement of electrons due to the ponderomotive force. Linear
theory says that the dynamic equilibrium of the electrons is maintained by the
balance of the electrostatic field and electron pressure gradient; non-linear theory
recognizes that there are three forces in balance. Consequently, the ponderomo-
tive term appears in the evolution equation (10.70) for the slow density perturba-
tion.

As noted in Section 2.14, the effect of the ponderomotive force is to drive elec-
trons away from regions of high wave intensity. For the case where the gradient
in field amplitude is parallel to the field this is easily explained with the help of



402 Non-linear plasma physics

Fig. 10.12. Electron motion in inhomogeneous, oscillating electric field.

Fig. 10.12 which shows successive half-cycles of the electron motion in a field
with amplitude increasing to the right; the dashed line represents the mid-point of
the electron oscillations. In the half-cycle when the force −eE is to the right the
electron experiences a weaker force than in the next half-cycle when the force is to
the left. Consequently, the net effect is to cause the electron to migrate to the left,
i.e. in the direction of the weaker field. The result is the same when the gradient in
amplitude is perpendicular to the field but in this case the ponderomotive acceler-
ation arises from the v × B ∼ v × ∇ × E0 term. In both cases the acceleration is
given by (2.68). The migrating electrons drag the ions with them creating plasma
cavities in regions of high field intensity and leading to a new kind of instability,
known as the modulational instability.

10.4.1 Modulational instability

Following Nicholson (1983), we may write the one-dimensional Zakharov equa-
tions in terms of dimensionless variables (see Exercise 10.7) as

i
∂E

∂τ
+ ∂2 E

∂z2
= nE (10.71)

∂2n

∂τ 2
− ∂2n

∂z2
= ∂2|E |2

∂z2
(10.72)

where E and n are proportional to |E0| and ns , respectively, and τ and z are the
dimensionless time and space variables.
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Fig. 10.13. Density depletion induced by field amplification.

Seeking a stationary solution of (10.72) we drop the first term and integrate twice
with respect to z to obtain

n = −|E |2 (10.73)

where constants of integration have been set equal to zero. Substitution in (10.71)
then gives the non-linear Schrödinger equation

i
∂E

∂τ
+ ∂2 E

∂z2
+ |E |2 E = 0 (10.74)

Such equations occur in different contexts throughout physics and it is well-known
that they have constant profile, single wave solutions known as solitary waves or
solitons. For example, seeking a solution of the form

E(z, t) = ei�τ f (z)

we find

f (z) = (2�)1/2sech(�1/2z)

This is sketched in Fig. 10.13 which also shows

n(z) = −2�sech2(�1/2z)

and demonstrates the effect of field concentration and density depletion that we
have been discussing. Such density depletions are often referred to as cavitons.
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Fig. 10.14. Illustration of (a) modulation and (b) filamentation of wave due to the pon-
deromotive force.

Although we have found only the very simplest solution of (10.71)–(10.72),
in which the wave oscillates within the static envelope f (z), it is easy to see
how the ponderomotive force leads to an instability. Consider the propagation of
a constant amplitude wave through an almost homogeneous plasma. Any small
density depletion will be matched by a corresponding amplitude increase. The
ponderomotive force will then deflect plasma from this region of increased wave
intensity thereby augmenting the density depletion. This is called the modulational
instability when it refers to the modulation of wave envelope along the direc-
tion of propagation as shown in Fig. 10.14(a). Modulation of the wave profile
can continue to a stage where the wave energy is confined to localized cavitons
several Debye lengths in dimension. This is known as Langmuir collapse. The
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collapse in coordinate space is accompanied by so-called pumping in k space,
with increasing k compensating for decreasing density in the dispersion relation
ω2 = ω2

p + 3k2V 2
e .

Although our analysis has involved only longitudinal waves, the ponderomotive
effect applies equally to electromagnetic waves and can produce filamentation of
the wave. This refers to the break-up of the wave in the direction transverse to
its propagation and is illustrated in Fig. 10.14(b). It is most easily understood in
terms of the refraction of the electromagnetic wave. In an inhomogeneous plasma
decreasing density means increasing refractive index and consequent focusing of
electromagnetic waves. The ponderomotive force then reinforces this effect by
driving plasma away from the region of increased wave intensity. In this way an
initially uniform beam can break up into narrow filaments. This is an important ef-
fect in laser plasma physics since it can obviously be triggered by non-uniformities
in the laser beam.

10.5 Collisionless shocks

The MHD shocks discussed in Section 5.6 have widths of the order of a mean free
path since collisions are responsible for the sudden change of state. In plasmas,
however, shock-like changes of state are found to occur over distances much less
than the mean free path. Perhaps the clearest example of this is the Earth’s bow
shock created by the interaction of the solar wind with the Earth’s magnetic field
to produce the transition from supersonic flow in the solar wind to sub-sonic flow
in the magnetosheath. The shock has a thickness of about 1000 km whereas the
collisional mean free path is of the order of 1 AU or 108 km. Clearly, collisions
cannot be responsible for this change of state. Other examples arise in laboratory
plasmas where changes of state occur within a few mean free paths but collisional
transport is insufficient to account for this and so-called turbulent or anomalous
dissipation must be involved. Any shock in which non-collisional processes play a
significant role is called a collisionless shock.

The first important difference to note between collisional and collisionless
shocks relates to the formation of the shock. In collisional shocks the wave profile
results from the balance between convective and dissipative effects. The wave
profile in collisionless shocks, on the other hand, is usually the result of a balance
between convective and dispersive effects. To understand how this comes about
it is useful to consider the wave in terms of its Fourier components. In the linear
approximation each component propagates independently and in the absence of
dispersion a wave pulse will maintain a constant profile since all components travel
with the same speedω/k. In the non-linear approximation, however, the wave pulse
broadens since any pair of components (ω1, k1) and (ω2, k2) within the pulse, for
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Fig. 10.15. Non-linear broadening and steepening of a wave pulse.

Fig. 10.16. Typical plasma dispersion curves.

which ω = ω1 ± ω2 and k = k1 ± k2, will be resonantly driven, leading to both
longer and shorter wavelength modes. If, in addition, the wave pulse is regarded as
a combination of compression and expansion waves, the effect of convection is to
steepen the compression wave (the wave-front) and broaden the expansion wave so
that the pulse changes its shape as illustrated in Fig. 10.15. In a collisional shock
wave steepening continues until the wave-front has a sufficiently large gradient that
dissipation balances convection.

Plasmas, however, are dispersive and a simple dispersion relation of the form
ω/k = const. will, in general, apply only over a limited band of wavenumbers.
Typical dispersion curves are shown in Fig. 10.16. Starting with a wave pulse
centred around some arbitrary point (ω0, k0) on the straight portion of the curve,
higher wavenumber modes may be generated by non-linear coupling up to the point
(ωc, kc), where the phase velocity changes, i.e. dispersion begins. Resonant mode
generation beyond this point would lead to shorter wavelength modes correspond-
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Fig. 10.17. Laminar shock profiles. In the rest frame of the shock the arrows indicate the
direction of flow from (1) upstream unshocked to (2) downstream shocked plasma. Shorter
wavelength waves either (a) trail behind or (b) forge ahead of the shock front.

ing to points on curves (a) or (b) but these travel at slower and faster phase speeds,
respectively, and as shown in Fig. 10.17 do not remain in the shock front. Thus,
steepening is limited by dispersion at a scale length ∼ k−1

c . If this is less than the
scale length for the onset of dissipation then the shock is ‘collisionless’ in that its
profile is determined by wave dispersion rather than collisional dissipation. This
will obviously be the case for shocks in collisionless plasmas but may also occur
in collisional plasmas.

A second important difference between collisional and collisionless shocks re-
lates to the jump conditions across the shock. The state of a collisional plasma
is determined by its density, flow velocity and temperature so that conservation
of mass, momentum and energy means that the jump conditions are independent
of shock structure. No such claim can be made for a collisionless shock. Even
if the unshocked plasma is in an equilibrium state represented by a Maxwellian
distribution there are too few collisions to re-establish a Maxwellian in the shocked
plasma. So, although mass, momentum and energy must still be conserved, the final
state of the plasma cannot in general be represented in terms of density, velocity
and temperature alone; mathematically, the moment equations do not form a closed
set. In particular, anisotropies created in the shock, in the absence of collisions,
may persist into the downstream plasma. A useful aspect of this is that observation
of the downstream plasma may yield information about the shock structure; for
example, it may suggest which unstable waves are responsible for the turbulent
dissipation.

A third point of sharp contrast shows up in shock structure. Collisions convert
the upstream state to the downstream state within a collisional shock which is about
a mean free path in dimension. Thus, particles from the upstream state cannot
penetrate the shock without undergoing conversion to the downstream state so that
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the two states remain physically separated. How is this separation maintained in
collisionless shocks?

One possible mechanism is to have a magnetic field perpendicular to the di-
rection of propagation of the shock of sufficient strength that the Larmor radius
rL � Ls, where Ls is the shock thickness. If this is not the case, or if the magnetic
field has a component parallel to the direction of shock propagation, fast particles
can cross the wave-front where their free energy may trigger instabilities leading
to turbulent dissipation. Thus, a second possibility is that the shock may have a
width of the order of the mean free path for turbulent dissipation. A special case
is that of low β shocks with shock velocity Vs greater than the magnetoacoustic
speed; here the number of particles with speed greater than Vs will be exponentially
small.

As with collisional shocks, kinetic theory is necessary for a rigorous description
of shock structure though transport equations, with ‘fitted’ turbulent transport co-
efficients replacing the collisional coefficients, are frequently used. In two special
cases, however, the use of a fluid description may be justified (in contrast with
collisional shocks where, on account of the shock width, there is no rigorous
justification):

(i) the cold plasma approximation, where thermal velocities are very much
smaller than phase velocities, i.e. the thermal spread in particle velocities
is unimportant and all particles of a given type experience the same local
force due to the self-consistent fields.

(ii) the small Larmor radius (strong magnetic field) approximation in which
particles move with the field lines.

A final comment concerns energy and entropy in collisionless shocks. Ordered
energy may be in the plasma flow, the magnetic field, or coherent oscillations.
Various energy conversions are possible and since we are dealing with collective
interactions it is neither obvious nor necessarily true that an increase in entropy
will accompany a change of state. Examples of isentropic transitions are solitons
which pass through the plasma leaving the final state identical to the initial state.
Alternatively, the final state may contain coherent plasma oscillations. We shall
see, however, that in both cases a small amount of dissipation (collisional or tur-
bulent) will convert these to shock transitions with increased entropy in the final
state.

10.5.1 Shock classification

The most general description of a collisionless plasma is given by the Maxwell–
Vlasov system of equations and for applications to collisionless shocks it is useful
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to make a formal separation of the dependent variables f , E and B into their aver-
age and fluctuating components. By an average quantity 〈φ〉 we mean an ensemble
average and δφ = φ− 〈φ〉 is the fluctuation about this. In practical terms what this
means is that 〈φ〉 represents an average shock profile and δφ a random or turbulent
variation superimposed on it. For the moment we make no assumptions about the
relative magnitudes of 〈φ〉 and δφ.

Since 〈δφ〉 = 0, on taking the ensemble average the Maxwell equations being
linear in f , E and B are unchanged except for the substitution of 〈φ〉 for φ while
the Vlasov equation for fα (α = i, e) becomes

∂〈 fα〉
∂t

+ v · ∂〈 fα〉
∂r

+ eα
mα

[〈E〉 + v × 〈B〉] · ∂〈 fα〉
∂v

= Cα (10.75)

where

Cα = − eα
mα

〈
[δE + v × δB] · ∂δ fα

∂v

〉
(10.76)

Writing the Vlasov equation in this way shows that the fluctuations act like a
‘collision’ term in the kinetic equation for 〈 fα〉. Note, however, that Cα involves
interactions between the fluctuating fields and distributions, i.e. particles. Because
of this, particle momentum and energy are not conserved in contrast with the action
of the classical collision term. Assuming no particles are created or destroyed we
have ∫

Cα dv = 0

but ∑
α

mα

∫
vCα dv �= 0

∑
α

1

2
mα

∫
v2Cα dv �= 0 (10.77)

A further consequence of (10.77) is that Cα does not cause 〈 fα〉 to relax to a
Maxwellian distribution, thus producing the contrast with collisional shocks con-
cerning the jump conditions noted in the previous section.

In principle we can now proceed to a fluid description by defining the plasma
fluid variables in terms of 〈 fα〉 rather than f . However, aside from the usual
problem of truncating the infinite set of moment equations based on (10.75), one
has the additional problem of closing the set of equations for the fluctuations δφ
which are needed for evaluating Cα. These are obtained from the Maxwell–Vlasov
equations by subtracting the ensemble averaged equations but we shall not pursue
this formal approach.

Instead let us consider the separation φ = 〈φ〉 + δφ in terms of shock clas-
sification. Shocks in which the field and plasma variables change in a coherent
manner are referred to as laminar; any turbulence present is on a scale small
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enough not to destroy the coherent profile. If there is no turbulence (Cα = 0) then
there is strictly speaking no shock (unless we introduce collisional dissipation) and
the solutions of the equations correspond either to solitary waves or undamped
oscillations. Non-zero Cα, but such that the turbulence is weak and occurs on
a scale which is small in wavelength compared with the shock thickness, gives
rise to dissipation and hence to true shock solutions. Such a shock will appear
laminar on a scale longer than the wavelength of the micro-turbulence. Typical
profiles are shown in the shock rest frame in Fig. 10.17. Short wavelength oscil-
lations damp out either (a) downstream or (b) upstream in accordance with the
dispersion curves in Fig. 10.16. The basic procedure here is to treat Cα as a small
perturbation.

As we shall see, the investigation of laminar shocks shows that they can exist
only within certain parameter ranges. Beyond these ranges the fluctuations become
large, Cα plays a dominant role and the shock loses its laminar profile. Such cases
are referred to as turbulent shocks

Note, however, that there is no sharp demarcation between laminar and turbulent
shocks. Rather, these are opposite ends of a spectrum embracing many possible
structures. For example, if the turbulent fluctuations are small in amplitude but with
a wavelength comparable with the shock thickness then this cannot be regarded
as micro-turbulence and the shock is a mixture of laminar and turbulent structure.
Other complications arise from the dispersive limitation of shock steepening giving
rise to precursors and wakes. Also, the spread in particle velocities can lead to
trapping and acceleration culminating in the emission of supra-thermal particles.
All of these phenomena are discussed theoretically at various levels by Tidman and
Krall (1971). Experimentally, the Earth’s bow shock, which has been extensively
investigated by satellite observations, is a rich source of all kinds of collisionless
shock. Here we shall present only a few well-established results starting with the
simplest mathematical descriptions and proceeding step by step to widen their
applicability.

As noted in Section 5.6.1, shocks may also be classified by the angle θ between
their direction of propagation and the magnetic field B1 in the unshocked plasma.
Thus, shocks may be perpendicular (θ = π/2), parallel (θ = 0), or oblique (0 <

θ < π/2). We shall see that perpendicular shocks are in general more amenable
to analysis. This is not surprising since, as already noted, a magnetic field at right
angles to the flow can of itself be an effective agent for separating the upstream
and downstream plasmas. On the other hand, in oblique and parallel shocks the
magnetic field can act as a particle conduit between the upstream and downstream
plasmas so that the physics of these shocks (and consequently the mathematics) is
immediately more complex. We illustrate procedure, therefore, with perpendicular,
laminar shocks.
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10.5.2 Perpendicular, laminar shocks

To start with as simple a model as possible let us consider non-linear wave propa-
gation in a cold plasma. If we put Cα = 0 initially then we know that the definitions

nα =
∫

〈 fα〉dv uα = 1

nα

∫
v〈 fα〉dv

lead to the cold plasma wave equations

∂nα/∂t + ∇ · (nαuα) = 0
(∂/∂t + uα · ∇) uα = eα(E + uα × B)/mα

}
(10.78)

on taking the first two moments of (10.75).

Linear wave solution

Before we seek ‘shock’ solutions of these equations it is of interest to identify the
linear wave which, through dispersive limitation of non-linear steepening, produces
the steady, finite amplitude wave. In Section 6.3.3 we showed that there were
two waves which propagate perpendicular to the equilibrium magnetic field. One
of these, the O mode, is a transverse electromagnetic wave which propagates at
frequencies above the plasma frequency. The other wave, the X mode, has three
branches and it is the lowest frequency branch (0 < ω < ωLH) which produces the
non-linear wave we shall investigate.

Assuming �2
e � ω2

p, i.e. v2
A � c2, from (6.36), (6.43) and (6.44) we have

ωUH ≈ ωR ≈ ωL ≈ ωp and ωLH ≈ |�i�e|1/2 so that, on using (6.29), (6.60)
becomes

ω2

k2c2
= ω2 − |�i�e|

ω2 − ω2
p

The solution of this equation in the frequency range 0 < ω < |�i�e|1/2 is

ω

k
≈ vA

(1 + k2c2/ω2
p)

1/2
(10.79)

This is the dispersion relation of the compressional Alfvén wave which appears as
the lowest branch of the X mode in Fig. 6.7. It is more commonly referred to by its
finite β name as the magnetoacoustic (or magnetosonic) wave. The points to note
are:

(i) for k → 0, ω/k ≈ vA = const.,
(ii) dispersion becomes significant for k ∼ kc = ωp/c,

(iii) waves with k > kc have phase speeds ω/k < vA.
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Fig. 10.18. Non-linear compressional Alfvén wave.

It follows that a finite amplitude wave generated by non-linear wave steepening
and limited by dispersion would have a wave-front, of width Ls ∼ c/ωp, travelling
with speed vA ahead of shorter wavelength modes as shown in Fig. 10.18.

Non-linear wave solutions

Calculations to find the structure predicted in Fig. 10.18 were first carried
out by Adlam and Allen (1958), Davis, Lüst and Schlüter (1958) and, subse-
quently, Sagdeev (1966). It is Sagdeev’s calculation, as presented by Tidman and
Krall (1971), that we follow. We suppose that a steady profile has been achieved
between non-linear wave steepening and dispersive limitation and we look for a
time-independent, laminar solution of (10.78). Thus, we assume all variables are
functions of x only and have values in the upstream region (x → −∞) given by

ne(−∞) = Zni(−∞) = n1

ue(−∞) = ui(−∞) = (u1, 0, 0)
B(−∞) = (0, 0, B1)

E(−∞) = (0, u1 B1, 0)


 (10.80)

It then follows from the Maxwell equations that

Bx(x) = 0, Ez(x) = 0, Ey(x) = u1 B1

Also, since the equations for By and uαz decouple from the rest we may look for a
solution in which these variables are zero. The remaining equations give

neuex = Zniuix = n1u1 (10.81)

uαx u′
αx = eα

mα

(Ex + uαy B) (α = i, e) (10.82)

uαx u′
αy = eα

mα

(u1 B1 − uαx B) (α = i, e) (10.83)
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B ′ = µ0e(neuey − Zniuiy) (10.84)

E ′
x = e

ε0
(Zni − ne) (10.85)

Now assuming quasi-neutrality we put Zni = ne in (10.81) and (10.84) but not
in (10.85) where the small inequality produces the electric field which, as we shall
see later, decelerates the ion flow. The quasi-neutrality condition is |Zni−ne| � n1

which can be shown a posteriori to be �2
e � ω2

p, as assumed in the linear wave
calculation. With this assumption it follows from (10.81) and (10.83) that

uix = uex = ux (10.86)

say, and

uiy = − Zme

m i
uey (10.87)

Substituting these results in (10.82) and subtracting the electron equation from the
ion equation then gives

Ex = −Buey

on ignoring terms of order me/m i. Likewise, multiplying (10.82) by mα/eα (α =
i, e) and subtracting eliminates the electric field to give to the same order

m i

Ze
ux u′

x = B(uiy − uey) = − B B ′

µ0nee

where the second equality follows from (10.84). Substituting for neux from (10.81)
and (10.86) and integrating we get

ux

u1
= 1 − 1

2M2
A

[(
B

B1

)2

− 1

]
(10.88)

where MA = ui/vA is the Mach number and vA = B1/(µ0n1m i/Z)1/2 is the
upstream Alfvén speed. This equation shows how the flow velocity decreases as
the magnetic field increases.

From (10.81), (10.84) and (10.87) we get

uey = ux B ′

µ0en1u1
= 1

µ0en1

[
1 − 1

2M2
A

(
B2

B2
1

− 1

)]
B ′ (10.89)

where terms of order me/m i have again been ignored and (10.88) has also been
used. Now all variables are, at least implicitly through (10.88) and (10.89), ex-
pressed in terms of the magnetic field B(x). To complete the calculation, therefore,
we need an equation for B(x). This is obtained from (10.84) using (10.83) to get

ux
d

dx
(ux B ′) = µ0eux

d

dx
(ux neuey) = −µ0e2n1u1

me
(u1 B1 − ux B)
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and hence, using (10.88) and (10.89),[
1 − 1

2M2
A

(
B2

B2
1

− 1

)]
d

dx

{[
1 − 1

2M2
A

(
B2

B2
1

− 1

)]
dB

dx

}

= ω2
pe

c2
(B − B1)

[
1 − B(B + B1)

2M2
A B2

1

]

Multiplying this equation by dB/dx gives an exact differential on the left-hand side
and on integration we get

1

2

(
dB

dx

)2

+�(B) = 0 (10.90)

where

�(B) = −

{
1

2

(
dB1

dx

)2

+ ω2
pe

2c2
(B − B1)

2

[
1 − (B + B1)

2

4M2
A B2

1

]}
[

1 − 1

2M2
A

(
B2

B2
1

− 1

)]2 (10.91)

Although (10.90) can be formally integrated to obtain x as a function of B it is
more instructive to discuss it directly since it has the form of an energy equation
for a particle in a potential well; B has the role of space coordinate and x is the
‘time’. When B = B1, the ‘potential energy’ �(B) = − 1

2(B
′
1)

2 and it is easy to
show that initially it decreases as B increases. Thereafter it reaches a minimum
and then increases with B and we can find the range of values of B by examining
the motion of the imaginary particle in the potential well. There are two possible
cases depending on whether B ′

1 is zero or not and these are both represented in Fig.
10.19.

In case (a) (B ′
1 �= 0) the ‘particle’, which starts off at the point shown with

kinetic energy 1
2(B

′
1)

2, will travel to Bmax, at which point its kinetic energy is
exhausted, and then it will roll back till it reaches Bmin. Thereafter it will oscillate
back and forth between these two points so the structure of B(x) is as shown in (c),
i.e. a train of finite amplitude waves of finite wavelength.

In case (b) the particle again travels from its initial point B1, here also its
minimum point, to its maximum point and back again, but because it returns to
an equilibrium point it does not oscillate further. In fact, it takes an infinite ‘time’
(distance x) on both stages of its journey so the structure of B(x) in this case is
a soliton, as shown in (d). Neither of these solutions corresponds to a shock but
the introduction of dissipation of some kind will convert both to laminar shock
profiles. However, before we demonstrate this let us examine the soliton solution a
little more closely to illustrate some of its parametric properties.
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Fig. 10.19. Potential function for non-linear compressional Alfvén wave.

First of all, with B ′
1 = 0, it is easily seen from (10.91) that �′(B1) = 0 so that

near B1

�(B) ≈ (B − B1)
2

2
�′′

1

where

�′′
1 =

[
d2�(B)

dB2

]
B=B1

= −ω2
pe

c2

(
1 − 1

M2
A

)

It follows that the asymptotic solution of (10.90) is

B − B1 ∼ e∓|�′′
1 |1/2x (x → ±∞)

This shows the slope predicted by the linear theory but with a modifying factor
(1 − 1/M2

A)
1/2 which is dependent upon the amplitude of the wave. This result

L ∼ c

ωpe

1

(1 − 1/M2
A)

1/2
(10.92)

for the breadth of the wave-front was obtained by Adlam and Allen (1958).
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Fig. 10.20. Validity diagram for undamped non-linear wave solution.

Next, writing BM for Bmax and noting that �(BM) = 0 it follows from (10.91)
that

BM = B1(2MA − 1) (10.93)

Also, from (10.88), (10.90) and (10.91) we see that ux → 0 and dB/dx → ∞ as

(B/B1) →
√

2M2
A + 1 (10.94)

The solution breaks down, therefore, if
√

2M2
A + 1 ≤ 2MA − 1, i.e. MA ≥ 2. This

is illustrated graphically in Fig. 10.20; for a valid solution the �(BM) = 0 curve
must lie below the ux = 0 curve. For waves with MA ≥ 2 dispersive limitation
of steepening fails as the limit (10.94) is approached. It is easily verified that
ne, Ex → ∞ as well as dB/dx in this limit. Physically, it is clear that dissipative
limitation will take over in response to these large gradients and we shall now
show that the introduction of dissipation converts these isentropic, non-linear wave
solutions into shocks.

Shock solutions

Dissipation is likely to arise via drift instabilities driven by the free energy in the
current flowing parallel to the wave-front. Indeed, this is how one attempts to arrive
at a self-consistent model of a perpendicular shock. The jump in Bz requires a
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jy which feeds energy into unstable drift waves thereby providing the turbulent
dissipation and consequent increase in entropy. A proper treatment clearly requires
kinetic theory but we can model this behaviour very simply by re-introducing
the ‘collision’ term Cα in (10.75) so that first-order velocity moments of Cα now
appear in the momentum equations. For simplicity, we shall introduce these only in
(10.83) since it is only in the y direction that there is an appreciable drift between
ions and electrons. Furthermore, we shall assume, despite the observations made in
Section 10.5.1 (see (10.77)), that the net loss of momentum from particles to fields
is negligible, that is ∑

α

mα

∫
vyCα dv ≈ 0

Neither of these simplifying assumptions can be rigorously justified since unstable
waves are capable of transferring momentum in all directions and from particles
to waves. However, they are not unreasonable in the limit of weak turbulence and
enable us to make analytic progress revealing, qualitatively at least, the effect of
dissipation on the isentropic solutions.

The analysis proceeds as before but there now appears an extra term in the
differential equation for B(x) which becomes

ux

u1

d

dx

(
ux

u1

dB

dx

)
= ω2

pe

c2
(B− B1)

[
1 − B(B + B1)

2M2
A B2

1

]
+µ0eux

u2
1

∫
vyCe dv (10.95)

Defining a (constant) ‘collision’ frequency ν by∫
vyCe dv = νneuey

and a ‘stretched’ space coordinate ξ by

x = ξux/u1

(10.95) becomes, on substituting for uey from (10.89),

d2 B(ξ)

dξ 2
= −dφ(B)

dB
− ν

u1

dB(ξ)

dξ
(10.96)

where

φ(B) = ω2
pe

2c2
(B − B1)

2

[
(B + B1)

2

4M2
A B2

1

− 1

]
(10.97)

Comparing (10.96) with

ẍ = −dV

dx
− ν ẋ
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Fig. 10.21. Damped motion in a potential well.

we see that it is analogous to damped motion in a potential well. This is sketched in
Fig. 10.21. The dashed lines join up the successive turning points and trace out the
values of B(ξ) as damping decreases the total energy of the imaginary particle in
the potential well; Bm(< BM) is now the maximum value attained by the magnetic
field and B2 is its final value. The corresponding structure of the magnetic field is
shown in Fig. 10.22; the dashed line here shows the soliton solution in the absence
of dissipation. There are now two scale lengths associated with the solution, c/ωpe

is still the width of the leading edge of the shock but this is followed by a trail
of waves of decreasing amplitude over a decay length of order u1/ν. Provided the
damping is weak we may regard the structure as a train of solitons the breadth of
which successively increases in accordance with (10.92).

Since Bm < BM, wave-breaking (ux → 0) no longer occurs as MA → 2 and
the shock solution exists beyond this limit. Indeed, one might suppose that by
increasing ν one could ensure a valid shock solution for arbitrary MA. As ν → ∞,

Bm → B2 = B1[
√

2M2
A + 1/4 − 1/2] < B1

√
2M2

A + 1, which is the value of
B at which ux = 0 as given by (10.94). However, this would be stretching the
validity of this simple model beyond reasonable limits. Not only have we supposed
that the damping is weak but we have ignored the fact that dissipation inevitably
leads to plasma heating. A dissipative, cold plasma model is not self-consistent.
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Fig. 10.22. Structure of the magnetic field in the shock solution.

Tidman and Krall (1971) discuss at some length shock solutions obtained from
the warm plasma wave equations with damping and find that finite β limitations on
MA outweigh the effect of dissipation with the result that the critical Mach number,
now a function of β and ν, is less than 2.

The usefulness of fluid equations for the description of finite temperature effects
is limited. Any spread in particle velocities means that some ions will have suffi-
cient kinetic energy to pass over the potential hill presented by the electric field but
others will not. These slower ions are therefore reflected back upstream so that one
has, in effect, two ion fluids rather than one. Furthermore, the reflected ions are
turned by the Lorentz force upstream and re-enter the shock where they may again
be transmitted or reflected – they bounce off the shock front, as illustrated in Fig.
10.23, until they have gained sufficient energy to pass through. Since the dynam-
ics of the ions is dependent upon their velocity distribution a kinetic description
becomes essential.

We are now ready to construct a self-consistent model of a laminar, perpen-
dicular shock. A fluid model based on a strong magnetic field (i.e. small Larmor
radius) is valid provided the scale length L 
 rL. For ions this would imply
a much stronger condition, βi � me/m i, than for electrons, βe � 1, when
L = Ls ∼ c/ωpe, the width of the wave-front produced by dispersive limitation of
wave steepening. Consequently, the ordering is

rLe � Ls � rLi

and the effect of the electric field, due to charge separation in the shock, is different
for electrons and ions. The electrons experience an E × B drift in the shock front,
establishing the current jy . The ion orbits are, however, essentially straight lines
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Fig. 10.23. Slow ion reflection off shock front.

so that the main effect of the electric field Ex is to slow the fluid (ion) flow. The
current jy is consistent with the increase in B(x) and drives the drift instabilities
which provide the dissipation to turn flow energy into thermal energy.

As we approach the critical Mach number (or increase βi), some ions are re-
flected before eventually passing through the shock. These ions drag electrons with
them and this plasma and the magnetic field lines that are drawn out with it form a
‘foot’ in the magnetic field structure in front of the main field jump, as illustrated
in Fig. 10.24. This foot, which has a width ∼ vA/�i ∼ c/ωpi, is observed as
the critical Mach number is exceeded since the fraction of reflected ions becomes
significant. As MA increases, the foot dominates and Ls ∼ c/ωpi. Dissipation in
supercritical shocks is caused by ion streaming instabilities feeding on the energy
in the reflected ions.

The same procedure can be used to discuss oblique (and parallel) shocks but
for the reasons already mentioned, the analysis is complicated. Often transport
equations with fitted ‘turbulent’ transport coefficients are used to obtain numerical
calculations of shock structure. The main interest in this field is related to plane-
tary and astrophysical shocks and much data has been collected about the Earth’s
bow shock which varies in nature between quasi-perpendicular and quasi-parallel.
While this makes it a very interesting object it also makes the interpretation of data



10.5 Collisionless shocks 421

Fig. 10.24. Shock structure for supercritical shocks.

difficult. Observations, usually made by groups of satellites so that correlations
may be recorded to facilitate interpretation, have not only estalished the existence
of the bow shock but have also yielded information about the electron and ion
foreshocks. The ion foreshock, comprising reflected ions with energies of a few
keV, is the shock foot to which we have already referred. The electron foreshock
consists of energetic electrons (1–2 keV) created at the quasi-perpendicular shock
and travelling back into the solar wind along the field lines. A possible mechanism
for this phenomenon is discussed in the following section.

10.5.3 Particle acceleration at shocks

The presence of electron and ion populations in the upstream plasma with energies
far greater than the mean energy of the solar wind particles is a well-established
feature of the Earth’s bow shock. These particles are produced as a result of re-
flection and acceleration by the shock and there are any number of mechanisms
which may be responsible. In the last section we noted the reflection of ions by the
electric field in a perpendicular shock but when there is a component of magnetic
field along the shock normal it is very easy for both ions and electrons to return
into the solar wind should conditions in the bow shock propel them back along the
field lines.

It is easiest to discuss this phenomenon in the de Hoffmann–Teller (HT) frame of
reference introduced in Section 5.6.4. In the HT frame, by definition, the upstream
velocity v1 and magnetic field B1 are parallel, a situation that is brought about by
applying a Lorentz transformation from the shock frame to a frame that is moving
parallel to the shock face with an appropriate velocity vHT. Thus, the incident (u)
and reflected (v) particle velocities may be resolved

u = u‖ + vHT (10.98)

v = v‖ + vHT (10.99)
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where u‖ and v‖ are both guiding centre velocities along B1. Depending upon the
reflection mechanism, the magnetic moment may or may not be conserved so we
write

v‖ = −αu‖ (10.100)

where α is a positive constant.
Since there is no electric field, E1 = −v1 × B1 = 0, in the upstream plasma,

kinetic energy is conserved so that

u2
‖ + u2

⊥ = v2
‖ + v2

⊥ (10.101)

where u⊥ and v⊥ are, of course, the components of the incident and reflected
velocities perpendicular to B1, i.e. the speeds of rotation around the field lines.

From (10.98)–(10.100) it follows that

u2 − v2 = (1 − α2)u2
‖ + 2(1 + α)u‖ · (u − u‖)

and hence,

v2 = u2 + (1 + α)2u2
‖ − 2(1 + α)u‖ · u

Thus, in the rest frame of the shock, the ratio of reflected to incident kinetic energy
is

v2

u2
= 1 + (1 + α)2 u‖

u2
− 2(1 + α)

u‖ · u
u2

(10.102)

Then, if θab is the angle between vectors a and b, we have u‖ cos θBn = u cos θvn

and u‖ · u = u‖u cos θBv so that (10.102) becomes

v2

u2
= 1 + (1 + α)2 cos2 θvn

cos2 θBn
− 2(1 + α)

cos θBv cos θvn

cos θBn

Clearly, this ratio can take a wide range of values, but for quasi-perpendicular
shocks cos θBn ≈ 0, making the second term dominant and leading to large in-
creases in reflected particle energy.

Note that the reflected ‘thermal’ energy represented by v2
⊥ is given from (10.100)

and (10.101) by

v2
⊥ = (1 − α2)u2

‖ + u2
⊥

≈ (1 − α2)u2
‖
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in the cold solar wind approximation (u2
⊥ ≈ 0) showing that α ≤ 1 for physical

solutions, there being no change in thermal energy for α = 1.

Exercises

10.1 What are the small parameters that justify use of linear theory in (i) particle
orbit theory, (ii) cold plasma wave theory, (iii) warm plasma wave theory,
(iv) MHD, and (v) kinetic theory? Give examples of the breakdown of
linear theory despite the smallness of the appropriate parameters.

10.2 Carry out the steps indicated in the text to obtain (10.6), (10.8) and (10.10).
Show that the spectral energy density E(k, t) defined by (10.12) satisfies

(10.13) and explain the physics of this equation.
10.3 With reference to Fig. 10.2, explain the relationship between the energy

level of an electron and its phase space trajectory. Why is it the resonant
electrons that are trapped? How does this impose a restriction on the valid-
ity of linear Landau theory and what is this restriction?

10.4 What is the essential property of the ballistic terms which gives rise to
plasma echoes?

Show that if waves exp −i[k1x − ω1t] and exp −i[k2(x − l)− ω2t] are
generated at grids separated by a distance l a plasma echo may appear at a
point x downstream where x = ω2l/(ω2 − ω1).

Note that the echo will appear only if ω2 > ω1. How do you explain this
physically?

10.5 Starting from the coupled harmonic oscillator equations (10.28) derive the
set of equations (10.32) for the amplitudes a0, a1, a2. Verify (10.34) and
show that it expresses conservation of energy. Why is energy conserved?

Obtain the Manley–Rowe relations (10.35).
10.6 Derive (10.39) from (10.36) by allowing for a frequency mismatch �ω =

ω0 − ω1 − ω2. Show that this leads to an increase in the threshold for
instability given by (10.41) and exlain why.

10.7 Obtain (10.71) and (10.72) from the one-dimensional Zakharov equations.
Show that the non-linear Schrödinger equation (10.74) has a solution of

the form E(z, t) = ei�t f (z) where f (z) = (2�)1/2sech(�1/2z). Interpret
this solution physically.

10.8 Carry out the steps indicated in the text to show that the magnetoacous-
tic wave with dispersion relation (10.79) arises on the lowest frequency
branch of the X mode.

With reference to Fig. 10.18, explain the properties of a finite amplitude
magnetoacoustic wave.
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10.9 Explain why a laminar, perpendicular shock has a thickness which is much
less than the ion Larmor radius but much greater than the electron Larmor
radius. What is the significance of this for the motion of ions and electrons
through such a shock? How does this lead to a self-consistent model for
these shocks?
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Aspects of inhomogeneous plasmas

11.1 Introduction

In this chapter we turn to a consideration of the physics of inhomogeneous plasmas.
Since virtually all plasmas whether in the laboratory or in space are to some degree
inhomogeneous, all that can be attempted within the limits of a single chapter
is to outline some general points and illustrate these with particular examples.
Throughout the book we have dealt in places with plasmas which were inhomoge-
neous in density or temperature and confined by spatially inhomogeneous magnetic
fields. In the case of the Z -pinch the high degree of symmetry allowed us to find
analytic solutions in studying the equilibrium. By contrast for a tokamak, even
with axi-symmetry, solutions to the Grad–Shafranov equation could only be found
numerically. Indeed the only general method of dealing theoretically with problems
in inhomogeneous plasmas is by numerical analysis.

Nevertheless useful analytic insights may be gained in two limits. In the first,
plasma properties change slowly in the sense that for an inhomogeneity scale length
L and wavenumber k, kL 
 1 and one can appeal to the WKBJ approximation de-
scribed in Section 11.2. In this limit we shall draw on illustrations from the physics
of wave propagation in inhomogeneous plasmas. If we picture a wave propagating
in the direction of a density gradient, at some point on the density profile it may
encounter a cut-off or a resonance. As we found in Chapter 6, propagation beyond
a cut-off is not possible and the wave is reflected, whereas at a resonance, wave
energy is absorbed. The WKBJ approximation breaks down in the neighbourhood
of both cut-offs and resonances. We shall illustrate some aspects of this physics by
means of a case history of stimulated Raman scattering, progressing from a local
model for which the WKBJ approximation is a valid representation, to a global
picture of the instability which can only be determined numerically.

Absorption of wave energy at a resonance is the basis of an important method of
plasma heating. For example, radiofrequency heating makes a critical contribution

425
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to heating tokamak plasmas and the whole concept of inertial containment fusion
is based on coupling laser energy to the target plasma. In general, radiation has to
propagate to a resonance where it can be absorbed so accessibility is an important
issue in inhomogeneous plasmas. The next stage of the heating process involves
the transfer of electromagnetic energy to the plasma across the resonant region
by means of mode conversion. Mode conversion describes the coupling of waves
which individually satisfy distinct dispersion relations over a range of parameter
space but which are coupled across some region. WKBJ analysis breaks down in
a region of mode conversion. The second case-history we examine deals with the
coupling of a longitudinal mode in the form of a Langmuir wave to a transverse
electromagnetic wave in the presence of a steep density gradient.

In the second limit kL � 1. Under these conditions the change in plasma
density is so steep that the inhomogeneity may sometimes be treated as a sharp
boundary and jump boundary conditions applied. However, in other cases the
physics of the boundary layer is important in characterizing the physics overall.
Plasmas close to material boundaries often display sharp spatial variation even if
relatively homogeneous outside these boundary layers. The importance of such
regions was first recognized by Langmuir who showed that for plasmas in contact
with a material surface, the interface between plasma and surface takes the form of
a sheath several Debye lengths thick. This comes about on account of the greater
mobility of electrons over ions that allows a negative potential to be established
across the sheath. Most electrons are therefore reflected back into the plasma from
the sheath.

11.2 WKBJ model of inhomogeneous plasma

The most widely used model for describing wave characteristics in non-uniform
plasmas is the WKBJ approximation, developed independently by Wentzel,
Kramers, and Brillouin to solve Schrödinger’s equation for quantum mechanical
barrier penetration. J recognizes the contribution of Jeffreys who had earlier devel-
oped the same approximation, albeit in a different context. The physical appeal of
the WKBJ approximation is intuitive in that it is only a step beyond the familiar
territory of a plane wave solution.

To keep the discussion as simple as possible consider electromagnetic wave
propagation in an isotropic plasma in which the density varies spatially along Oz.
For a linearly polarized transverse wave the electric field E (in the Oxy-plane)
satisfies

d2 E

dz2
+ k2(z)E = 0 (11.1)
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where

k2(z) = ω2 − ω2
p(z)

c2
(11.2)

For a homogeneous plasma the electric field satisfying (11.1) has the form
E(z, t) = A exp[i(φ(z)− ωt)] where A is constant and φ(z) = kz. For the
inhomogeneous case in which the plasma density is a slowly varying function of
z, we keep this form for the field and set out to find a representation for the phase
φ(z), sometimes referred to as the eikonal. Then, dropping the time dependence,

dE

dz
= i Aφ′eiφ d2 E

dz2
= {i Aφ′′ − A(φ′)2

}
eiφ

in which φ′ = dφ/dz, φ′′ = d2φ/dz2. Substituting in (11.1) gives

iφ′′ − (φ′)2 + k2(z) = 0 (11.3)

For plasmas in which the density varies on a sufficiently long scale length the φ′′

term may be taken to be small compared with k2(z) giving

φ′ = ±k(z) φ′′ = ±k ′(z)

Then from (11.3)

φ′(z) = [
k2(z)± ik ′(z)

]1/2 	 ± k(z)+ ik ′(z)
2k(z)

φ(z) 	 ±
∫ z

k(z)dz + i ln
√

k(z)

The integration constant may be set to zero by an appropriate choice for the lower
limit of the integral, but is left unspecified for the time being since it does not affect
the argument. Consequently the spatial dependence of the electric field takes the
form

E(z) = A

k1/2(z)
exp

(
±i
∫ z

k(z)dz

)
(11.4)

This WKBJ solution corresponds to right (+) and left (−) travelling waves. The
wave forms in (11.4) resemble plane waves with phases expressed as an integral
over the region of propagation but with an amplitude that is only weakly spatially
varying. A useful rule of thumb for the validity of WKBJ solutions follows from
the requirement that φ′′ in (11.3) be much less than k2, leading to the condition∣∣∣∣1k dk

dz

∣∣∣∣� k (11.5)
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Clearly (11.5) is violated when k → 0 (cut-off) or when dk/dz → ∞ (resonance).
When the WKBJ method fails we generally have to resort to numerical solution
of the parent differential equation. For consistency we need to check how well the
solutions satisfy the Maxwell equations. In the first place we find that the wave
magnetic field decreases as cut-off is approached in contrast to the swelling of the
electric field. Consistency provides a more precise validity condition as to what is
meant by ‘slowly varying’. Unless this condition is satisfied one solution generates
some of the other so that the two waves in (11.4) are no longer independent and
reflection occurs.

Now consider an electromagnetic wave propagating from a source at z = 0 into
a plasma of increasing density. The electric field of this wave may be represented
as

Ei(z) = A

k1/2(z)
exp

(
i
∫ z

0
k(z)dz

)

and that of the reflected wave as

Er(z) = AR

k1/2(z)
exp

(
−i
∫ z

0
k(z)dz

)

where R denotes the reflection coefficient for wave amplitude. If we now let z →
zc, where z = zc is a cut-off point, and equate the two fields in this region, turning
a blind eye to WKBJ breakdown, it follows that

R = exp

(
2i
∫ zc

0
k(z)dz

)
(11.6)

The integral in (11.6) is known as the phase integral since it measures the change
in phase of the wave from source to the cut-off and back. Not surprisingly (11.6)
is not a correct representation of the reflection coefficient. We shall find in the
following section that it differs from the true value by a factor i .

The WKBJ method is a mathematical representation of ray-tracing and its ex-
tension to three dimensions, known as the eikonal or ray-tracing approximation,
is widely used (see Weinberg (1962)). The amplitude of the wave is taken as
E0 exp[iφ(r, t)], where φ(r, t) satisfies ∇φ = k(r, t) and ∂φ/∂t = −ω(r, t), and
the direction of energy flow is given by vg = ∂ω/∂k. If we denote the dispersion
relation by

D (ω, k, r, t) = 0 (11.7)

we can express ω = ω (k, r, t). The ray trajectories are then determined by the set
of equations (see Exercise 11.3):

dr
dt

= − ∂D/∂k
∂D/∂ω

dk
dt

= − ∂D/∂r
∂D/∂ω

dω

dt
= − ∂D/∂t

∂D/∂ω
(11.8)
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Fig. 11.1. The function k2(z) showing regions of validity of the WKBJ aapproximation.

Starting from a source at the plasma boundary that injects a given spectrum of
wavenumbers, (11.8) can be integrated to find the ray characteristics. Numerical
ray-tracing codes find wide application across many areas of plasma physics.

11.2.1 Behaviour near a cut-off

The next task is to see how to deal with behaviour near a cut-off. At a cut-off (or
C-point) the incident wave is reflected and k2(z) changes sign from positive to
negative. Figure 11.1 shows a cut-off at z = zc in a region z1 ≤ z ≤ z2 over which
WKBJ solutions fail. For z ≤ z1 the solutions correspond to incident and reflected
waves as we saw in the previous section. Beyond z2, WKBJ solutions are again
valid but now correspond to evanescent and amplifying waves. In the evanescent
wave both electric and magnetic fields decay spatially and there is no energy flux
beyond the C-point. Clearly an amplifying solution is non-physical in the absence
of a source of energy. Across the region z0 ≤ z ≤ z3, k2(z) may be represented as

k2(z) = −
(

k2
c

zc

)
(z − zc)+ O(z − zc)

2
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Fig. 11.2. Ai(ζ ) and Bi(ζ ) (dashed curve).

where kc is a constant, not to be confused with k2(zc) = 0, and (k2
c/zc) is real and

positive. Thus across this region (11.1) becomes

d2 E

dz2
−
(

k2
c

zc

)
(z − zc)E = 0

which can be cast as Stokes’ equation

d2 E

dζ 2
= ζ E (11.9)

by making use of the transformation ζ = (k2
c/zc

)1/3
(z − zc). Stokes’ equation has

no singularities for finite ζ . Its solution is therefore finite and single-valued and is
expressed in terms of Airy functions Ai(ζ ), Bi(ζ ) represented in Fig 11.2.

Solutions to Stokes’ equation have to be considered over the complex ζ -plane.
We can readily write down WKBJ solutions to Stokes’ equation; disregarding
constants

E = ζ−1/4 exp

(
±2

3
ζ 3/2

)
(11.10)

A linear combination of these solutions is a good representation across the ranges
indicated in Fig. 11.1. However, since these are multiply valued functions, the
solution to Stokes’ equation, being single-valued, cannot be represented by the
same combination for all ζ . For example, for real positive ζ (arg ζ = 0), the WKBJ
approximation to Ai(ζ ) is given by

Ai(ζ ) = Aζ−1/4 exp

(
−2

3
ζ 3/2

)
(11.11)
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On the other hand, if we keep |ζ | constant and set arg ζ = π , this representation
clearly fails. For a correct general representation we need both terms in (11.10),
i.e.

Aζ−1/4 exp

(
−2

3
ζ 3/2

)
+ Bζ−1/4 exp

(
2

3
ζ 3/2

)

with the proviso that the constants A and B take on different values as ζ moves
in the complex plane. The need for this was first recognized by Stokes and
is known as the Stokes phenomenon. The exponents involved are real for arg
ζ = 0, 2π/3, 4π/3. For large |ζ | one contribution is exponentially large (the
dominant term), the other exponentially small (subdominant). A fuller discussion
of the Stokes’ solutions has been given by Budden (1966).

We can now return to reconsider the reflection coefficient discussed earlier. This
requires a solution of the wave equation across the entire range. The argument is
quite general but for sake of reference we consider it in the context of a light wave
incident from z = 0 on a plasma containing a region across which the density
varies linearly with z. Over that part of the range beyond z2, the solution contains
only the subdominant term so that over the region z1 ≤ z ≤ z3 the solution is
determined by Ai(ζ ). This solution has to fit on to the WKBJ solutions below the
cut-off, i.e.

k−1/2

[
exp

(
i
∫ z

0
k(z)dz

)
+ R exp

(
−i
∫ z

0
k(z)dz

)]

Multiplying this by the constant exp(−i
∫ zc

0 k(z)dz) and recasting in terms of ζ we
find the solution valid over the range (z0, z3) is proportional to

ζ−1/4

[
exp

(
−2

3
ζ 3/2

)
+ R exp

(
−2i

∫ zc

0
k(z)dz

)
exp

(
2

3
ζ 3/2

)]

This form must be identical to the approximation for Ai(ζ ) for arg ζ = π so that

R = i exp

(
2i
∫ zc

0
k(z)dz

)
(11.12)

which differs from the result (11.6) by a phase factor π/2.
In general two different representations of a function can match only over some

limited range of z before phase divergence becomes serious. Implicit in the match-
ing is the assumption that there is a region of overlap across which both the eikonal
solution and the asymptotic Airy solution are each valid representations. Matching
will clearly not be possible if k2(z) is significantly non-linear before valid WKBJ
solutions are reached.
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11.2.2 Plasma reflectometry

The reflection of a wave at cut-off lends itself to a versatile and widely used di-
agnostic, plasma reflectometry. Simply detecting a reflected wave is evidence that
at some point in the profile the density is supercritical. The question of interest is
precisely where reflection occurs. Finding the cut-off point requires a measurement
of the relative phases of the incident and reflected waves. The electron density
profile may be unfolded by sweeping the frequency of the incident wave. The tech-
nique has been widely applied to tokamak plasmas and has the advantage of both
good spatial (≤ 1 cm) and temporal (≤ 5 µs) resolution. Reflectometry has certain
features in common with interferometry, but whereas interferometry builds up an
electron density profile from measurements along different chords (of a cylindrical
plasma), reflectometry constructs the same profile from phase measurements at
different frequencies. One of the difficulties inherent in reflectometry arises from
the effect of density perturbations on propagation of the incident wave, though
techniques have been developed to get round this difficulty. Different types of
reflectometer are used in plasma diagnostics. In the simplest, a single frequency is
used, with the frequency swept linearly across a broadband range. Strong (MHD)
fluctuations in the plasma present problems should this sweep be too slow.

For simplicity we consider O-wave propagation and ignore relativistic correc-
tions. We saw from the previous section that the phase shift of the reflected wave
is given by

φ = 2

c

∫ zc

0
(ω2 − ω2

p(z))
1/2 dz − π

2

This phase shift may be expressed as a time delay τ = dφ/dω and if τ is measured
for frequencies within the range of interest, one may then determine the position
of the cut-off from an Abel inversion:

zc(ω) = z0 + c

π

∫ ω

0

τ(ω′)
(ω2 − ω′2)1/2

dω′ (11.13)

From this relation, knowing the phase delay for frequencies less than ω, the posi-
tion of the cut-off may be found. Since measurements cannot be carried out from
ω = 0, an extrapolation is needed from some level to the plasma edge, assuming
some density profile.

While measurements using a single frequency spectrum are widely used in prac-
tice, this approach suffers from the limitations imposed by the length of the interval
needed for the diagnostic to map the density profile. There is an intrinsic limit to the
time resolution of the reflectometer since the profile is unfolded step by step. Thus
the measurement of the density profile needs to be completed within an interval
short enough that significant changes in plasma parameters do not occur. Density
fluctuations present between the boundary of the plasma and the cut-off affect wave



11.3 Behaviour near a resonance 433

propagation and are the source of inaccuracies in constructing the density profile.
Fluctuations with short scale length give rise to destructive interference; however,
unless the plasma is in a highly turbulent state it is usually possible to unfold a
density profile, albeit at the cost of reduced resolution.

11.3 Behaviour near a resonance

Resonances are less straightforward to deal with than cut-offs since the essential
physics governing the resonance has to be incorporated to obtain physically mean-
ingful results. Whereas waves undergo reflection at cut-offs, resonances are char-
acterized by absorption of the wave energy by the plasma. As the wave approaches
a resonance, n = ck/ω → ∞ so that the wave is refracted toward the resonant
surface and reaches it at normal incidence. Since condition (11.5) is increasingly
well satisfied, no reflection occurs. What happens to the energy carried by the
wave to the resonance (or R-point)? In the strict cold plasma limit, this energy
could only be stored in the form of currents, resulting in the non-physical limit
of increasingly large rf power density. However in real plasmas, finite temperature
ensures that the refractive index of the plasma remains finite even at a resonance. In
warm plasmas, the consequent damping, however small, means that some heating
takes place. Even in the cold plasma limit where there is no dissipation, a small
amount of damping, ν, has to be introduced into the analysis in order to move
the singularity at the resonance (ωR(z) − ω)−1 off the real axis and so determine
how the solution is to be continued around the singularity. In physical terms, if
one examines the transport of wave energy to the resonance, the time required to
approach the R-point varies as ν−1. In hot plasmas Coulomb collisions near the
resonance are ineffective as an agent for energy dissipation so that an alternative
means is needed. This alternative is provided by linear mode conversion which
converts the incident wave to a warm plasma wave. Thus as well as C-points and
R-points we now identify X -points, in the neighbourhood of which linear mode
conversion takes place.

An issue of importance in discussing resonances in inhomogeneous plasmas
is the question of their accessibility. In the radiofrequency heating of laboratory
plasmas a wave is launched from an antenna configuration outside the plasma and
propagates to a region within the plasma where the resonance is sited. Formally,
the resonance is accessible if k2(z) > 0 at all points on the density profile below
the resonant density. However, if a C-point is present en route to the R-point then
reflection there will prevent the wave from reaching the resonance. One important
exception to this appears in cases where the cut-off and resonance stand back-to-
back. Between cut-off and resonance the wave is evanescent (k2(z) < 0). If the
separation between the points is not too great some fraction of the incident wave
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energy can tunnel through the evanescent region beyond the C-point to reach the
resonance. Such a conjunction of C- and R- points occurs not only in radio wave
propagation in the ionosphere but in the resonant absorption of laser light by target
plasmas.

The first analysis of the physics of a cut-off and resonance back-to-back was
carried out by Budden (1966) who used a wave equation with the form

d2 E

dz2
+ k2

0

(
1 + zc

z

)
E = 0 (11.14)

This provides the simplest representation for a back-to-back cut-off and resonance,
with the resonance at z = 0 and the cut-off at z = −zc. With suitable substitutions
(11.14) may be cast in standard form with solutions expressed in terms of confluent
hypergeometric functions. Asymptotic solutions for large positive z may be con-
nected to those for z large and negative, with a small amount of damping introduced
to resolve the singularity present. A wave travelling to the right encounters the
cut-off first and is in part reflected while some fraction tunnels through beyond
the C-point. Budden found (amplitude) reflection and tunnelling (transmission)
coefficients

|R| = 1 − e−2η |T | = e−η (11.15)

where η = 1
2πk0zc. A wave travelling to the left meets the resonance first as shown

in Fig. 11.3. The tunnelling coefficient is symmetric in the two cases but there is
no reflection at the resonance for incidence from the right so that

|R| = 0 |T | = e−η (11.16)

Physically, the parameter η provides a measure of the number of vacuum wave-
lengths that fit between the cut-off and resonance. For right-propagating waves,
η � 1 implies that most of the incident flux penetrates to the resonance. For η 
 1,
tunnelling is ineffective for right-propagating waves resulting in almost total reflec-
tion. It is clear from both expressions (11.15) and (11.16) that |R|2 + |T |2 < 1, i.e.
energy is not conserved.

The ingredient missing from Budden’s equation is mode conversion which is
important in regions of the plasma over which two modes that in general satisfy
distinct dispersion relations, and thus propagate as independent modes, no longer
do so. Over such regions, modes can interact strongly with one another. In mode
conversion a wave incident from one side of the region in question will emerge
from the other side as a linear combination of two modes. Mode conversion is
important in practice in the absorption of electromagnetic energy by a plasma,
leading to heating.
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Fig. 11.3. Behaviour of k2(z) in the neighbourhood of a cut-off resonance pair.

11.4 Linear mode conversion

Mode conversion operates over regions where otherwise distinct modes have a
common wavelength. Outside such a region, coupling between modes is weak and
one would expect WKBJ solutions to provide a satisfactory representation of the
propagation characteristics of each mode. However, within this region the WKBJ
approximation breaks down and an alternative formulation is needed to charac-
terize wave propagation. One approach extrapolates the homogeneous dispersion
relation, D(ω,k) = 0, to represent local wave characteristics by means of a new
relation D(ω, k, z) = 0. A differential equation may then be constructed from this
algebraic equation by introducing a mapping k → −id/dz, an operation that is not
in general unique.

If one considers a one-dimensional model of two modes subject to mode conver-
sion and allows for propagation in either direction then the governing dispersion
relation is fourth-order in k so that mapping in this way produces a fourth-order
differential equation. One such equation constructed by Erokhin (1969)

y(iv) + λ2zy′′ + (λ2z + γ )y = 0 (11.17)

has been widely used as a paradigm mode conversion equation. Since the coef-
ficients are linear in z, solutions may be found in the form of a contour integral
y(z) = ∫

C F(k) exp(−ikz) dz. The asymptotic properties of a solution having this
form are found by the method of steepest descents. The saddle points are found
and the contribution to the asymptotic solution from a saddle point gives a WKBJ
solution. The asymptotic solutions correspond to superpositions of the WKBJ
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solutions for the separate waves. However this procedure provides a solution across
the region where no WKBJ solution is possible. The contour C is chosen to thread
the saddle points giving the required behaviour (see Swanson (1985, 1989)). Dis-
carding y(iv) in (11.17) reproduces Budden’s equation. The important difference
here is that the energy missing from Budden’s equation is now mode-converted to
the slow wave branch.

Quite apart from the non-uniqueness of the operation k → −id/dz, the anal-
ysis involved in such an approach is both complex and cumbersome to apply. A
simpler alternative is based on the idea that is central to mode coupling, namely
that just two modes are involved and the propagation of each is governed by
distinct differential equations except for a limited region across which the modes
(and hence the equations) are coupled. This local coupling provides the means by
which power can flow from one mode to the other in the coupling region. One can
show for example how a system of differential equations may be transformed to
separate out a second-order system in the neighbourhood of a mode conversion
point (see Heading (1961)). Away from the mode conversion point the solutions to
this equation represent a superposition of the two modes involved. This approach
has since been used and adapted by Fuchs, Ko and Bers (1981) and by Cairns and
Lashmore-Davies (1983); see Cairns (1991). In fact the method was first devised
in 1932, independently by Landau and by Zener, in treating the pseudo-crossing
of potential energy curves in a quantum mechanical description of slow adiabatic
atomic collisions; see Landau and Lifshitz (1958). Indeed the energy transmission
coefficient found from the mode-coupling analysis in this section ((11.21) below)
is readily recovered from the Landau–Zener transition probability after an appro-
priate transcription of variables.

Coupling involving two modes is illustrated in Fig. 11.4 which shows the cross-
ing of the individual dispersion curves for the uncoupled modes k = k1(z),
k = k2(z). In the neighbourhood of this curve-crossing, the dispersion relation
is assumed to take the form

[k − k1(z)][k − k2(z)] = χ (11.18)

in which the coupling term χ is significant only in the neighbourhood of the cross-
ing point z = z0 of the (uncoupled) dispersion curves. The next step is to convert
this local dispersion relation to a second-order differential equation by identifying
k with −id/dz. To get round the difficulty introduced by the non-uniqueness of
this procedure Cairns and Lashmore-Davies proposed that uniqueness be ensured
by a choice compatible with energy conservation. For modes with positive group
velocities (as in Fig. 11.4) they introduced mode amplitudes φ1 and φ2 normalized
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Fig. 11.4. Coupling of modes k = k1, k = k2.

so that |φ1|2, |φ2|2 denote energy fluxes in the respective modes. Energy (flux)
conservation then requires

|φ1|2 + |φ2|2 = constant (11.19)

A pair of differential equations satisfying (11.19) and reproducing the dispersion
relation (11.18) is then

dφ1

dz
− ik1(z)φ1 = iχ1/2φ2

dφ2

dz
− ik2(z)φ2 = iχ1/2φ1


 (11.20)

Across the region of mode conversion one may assume

k1(z) = a(z − z0) k2(z) = b(z − z0)

which allows one of the amplitudes in (11.20) to be eliminated and the other deter-
mined by a second-order differential equation. This procedure leads to the Weber
equation with solutions expressed in terms of parabolic cylinder functions. The
asymptotics of these solutions are well known and a choice is made to represent an
incoming mode with two outgoing modes, leading to expressions for the transmis-
sion and mode conversion coefficients in terms of the local dispersion relation and
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Fig. 11.5. Behaviour at a cut-off near a mode conversion region.

gradients in the region of mode conversion. Cairns and Lashmore-Davies (1983)
showed that the energy transmission coefficient is given by

T = exp

[
− 2πχ0

|a − b|
]

(11.21)

where χ0 denotes the value of χ at z = z0. The energy flux in the converted wave
is (1 − T ) times the incident flux.

In many cases of interest one of the modes suffers a cut-off near the mode conver-
sion point resulting in most of the energy associated with this mode being reflected
and coupled to oppositely directed waves. Thus in Fig. 11.5 an incoming wave is
shown approaching a C-point from the left. The fraction of energy transmitted is T
while the reflected fraction (1 − T ) couples to a mode propagating in the opposite
direction at an X -point. Here a fraction T undergoes mode conversion, giving a
fraction T (1−T ) of the incident energy flux converted while the remainder (1−T )2

is reflected. If we picture a wave approaching the X -point from the right we see
that the converted mode now propagates away from the cut-off and no reflection
occurs. The transmission coefficient is unchanged but the converted fraction is now
1 − T . There is therefore an asymmetry between waves approaching from the left
(resulting in reflection) and waves from the right (no reflection). These results are
summarized in Table 11.1.

The appeal of this approach is that it side-steps the analytic complexity needed
to deal with equations such as (11.17). On the debit side the assumption that the
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Table 11.1. Transmission (T ), reflection (R) and mode conversion (C)
coefficients for modes incident from right (r ) and left (l) of the cut-off

resonance pair. Note η∗ = πχ0/|a − b|.

T R C

Tr = e−2η∗
Rr = 0 Cr = 1 − e−2η∗

Tl = e−2η∗
Rl = (1 − e−2η∗

)2 Cl = e−2η∗
(1 − e−2η∗

)

coupling coefficient χ may be taken to be both spatially uniform and symmetric
between the modes is unlikely to be generally valid.

11.4.1 Radiofrequency heating of tokamak plasma

One important application of mode conversion is found in radiofrequency (rf)
heating of plasmas, particularly in tokamaks. We saw in Chapter 1 that the tem-
perature corresponding to the optimum reaction rate for D–T fusion lies in the
region 10–20 keV. The tokamak current heats the plasma through ohmic heating
(typically to temperatures of a few keV) but as the temperature rises, ohmic heating
becomes less and less effective and on its own is unable to heat the plasma to the
stage where alpha particle heating can sustain fusion. Additional power is needed
and this auxiliary heating in tokamaks is provided by neutral beam injection and rf
heating. In schemes for rf heating, power is fed into the plasma from waveguides
mounted in the wall of the torus. This power has then to be transported to the
R-point deep inside the plasma so that the issue of accessibility is critical to the
success of this form of heating. Various frequency ranges are used, including both
ion and electron resonances. Ion cyclotron resonance heating (ICRH) operating
in the range of a few tens of MHz has produced up to 16 MW of power in
JET.

To illustrate the importance of accessibility of the R-point consider a simple
model for electron cyclotron resonance heating (ECRH), in which an rf wave is
launched in the mid-plane of the torus, from either the inside or outside edge.
Typically ECRH operates at frequencies across the range 30–150 GHz. The plasma
density varies approximately parabolically across the torus, while the toroidal mag-
netic field varies as 1/R. Since the wavelength of the electron cyclotron mode is
typically much less than the scale length of the tokamak plasma, a WKBJ repre-
sentation will be valid except at a cut-off and in the neighbourhood of a resonance.
Away from a resonance, wave propagation is adequately described by the cold
plasma, Appleton–Hartree dispersion relation so that we may make use of the CMA
diagram, introduced in Section 6.3.4. Figure 11.6 corresponds to regions 1, 3 and 5
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Fig. 11.6. Section of the CMA diagram showing access to a resonance via path a in
contrast to path b which encounters a cut-off before the resonance.

in the CMA diagram, Fig. 6.12, and serves to highlight the role of both electron
density and magnetic field in determining the propagation characteristics of these
modes. A wave propagating from the wall of a tokamak into regions of higher
density is represented by a point in the CMA diagram moving to the right, whereas
upward movement corresponds to an increase in the magnetic field strength. A
wave that follows path a in Fig. 11.6 propagates from a region of higher to one
of lower magnetic field and is capable of accessing the R-point, whereas one that
takes path b will fall foul of the C-point (R = 0) in propagating from a low density
region to one of high density. Thus a wave launched from the outside wall will be
reflected whereas one launched from the inside is able to reach the upper-hybrid
resonance. We stress that this picture is valid strictly for a cold, loss-free plasma.
For warm plasmas a crucial distinction is that electron cyclotron resonances at both
the fundamental and second harmonic now become dominant. Electrons interact
strongly with an RCP field whereas this is shorted out in the cold plasma limit. A
concise discussion of the various schemes used in the rf-heating of plasmas may
be found in Cairns (1991).
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11.5 Stimulated Raman scattering

We turn next to the first of the topics chosen to illustrate aspects of the physics
of inhomogeneous plasmas. Stimulated Raman scattering was introduced in Sec-
tion 10.3.1 in model format. We now want to take this to a stage where it becomes
possible to use the model to interpret and understand observations of SRS. In
particular we shall examine the ways in which plasma inhomogeneity affects the
nature of the instability. Dephasing, the fact that phase-matching conditions can be
satisfied only over small regions of the plasma, is now a key concern. In addition,
non-local effects, such as the reflection of the Raman decay modes as the density
increases, can lead to feedback and this in turn can change the nature of the insta-
bility in important ways. In particular, a wave that is C-unstable in a homogeneous
plasma may become A-unstable in the presence of a density gradient.

11.5.1 SRS in homogeneous plasmas

Before turning to the inhomogeneous case it is helpful to retrieve some Raman
characteristics for a homogeneous plasma on the basis of the electron fluid equa-
tions as opposed to the model equations used in Section 10.3.1. We begin by
representing the laser pump fields by

E0(r, t) = 2E0 cos(k0 · r − ω0t) B0(r, t) = 2B0 cos(k0 · r − ω0t) (11.22)

with ω2
0 = ω2

p + k2
0c2. Provided the laser intensity is not so high as to accelerate

electrons to relativistic velocities then the electron quiver velocity in the laser
electric field is given by v0(r, t) = 2v0 sin(k0 · r − ω0t). For laser intensity
IL and wavelength λL, the normalized quiver velocity, v0/c = (eE0/mω0c) =
4.27 × 10−10 I 1/2

L (W cm−2)λL(µm), is a critical parameter in characterizing para-
metric instabilities. A straightforward first-order perturbation analysis of the elec-
tron fluid equations (see Exercise 11.9) leads to a pair of coupled equations de-
scribing SRS in a homogeneous plasma:[

∂2

∂t2
− c2∇2 + ω2

p

]
vs = − e2

mε0
nev0 (11.23)

[
∂2

∂t2
− 3V 2

e ∇2 + ω2
p

]
ne = n0∇2(v0 · vs) (11.24)

where ∂vs/∂t = −eEs/m and subscript s denotes the scattered wave.
Fourier analysing (11.23) and (11.24) leads directly to the Raman dispersion

relation

(ω2 − ω2
p − 3k2V 2

e )(ω
2
s − ω2

p − k2
s c2) = k2v2

0ω
2
p (11.25)
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Physically, the laser pump in the presence of an electron density perturbation asso-
ciated with a Langmuir wave is the source of a non-linear current which generates
the Raman scattered light wave, given frequency and wavenumber matching. The
pump and scattered light wave beat to produce a ponderomotive force proportional
to ∇(E0 · Es) and this in turn drives the density fluctuation. This feedback loop
makes possible the development of SRS. For an instability to occur we need a pair
of complex conjugate roots. Accordingly we set ω = ωL + iγ , ωs = ωsr − iγ ,
where ω2

L = ω2
p + 3k2V 2

e , ω2
sr = ω2

p + k2
s c2, and |γ | � ωp. Then from (11.25) the

maximum homogeneous Raman growth rate γ0 is given by

γ0 = kv0ωp

2(ωLωsr )1/2
(11.26)

In the event that the phase matching conditions ω0 = ω + ωs , k0 = k + ks are not
exactly satisfied, mismatch will result in a growth rate γ < γ0.

In practice one needs to allow for damping of the Raman decay waves. The
Langmuir wave will be Landau damped but in a fluid model we can only represent
this damping phenomenologically so that (11.25) is replaced by

(ω2 + 2iωγp − ω2
p − 3k2V 2

e )(ω
2
s − 2iωsγs − ω2

p − 3k2
s c2) = k2v2

0ω
2
p

where γp, γs denote damping coefficients for the plasma and scattered light waves
respectively. The Langmuir wave may suffer collisional as well as Landau damping
so that in general γp = γL + νei/2, where νei denotes the electron–ion collision
frequency. Damping of the light wave is purely collisional with γs = ω2

pνei/2ω2
s .

Under resonance conditions

(γ + γp)(γ + γs) = γ 2
0 (11.27)

which determines the threshold for the onset of SRS

γ0 = (γpγs)
1/2 (11.28)

and the Raman growth rate in terms of the maximum growth rate γ0 and the wave
damping coefficients, i.e.

γ = −1

2
(γp + γs)±

[
γ 2

0 + 1

4
(γp − γs)

2

]1/2

(11.29)

11.5.2 SRS in inhomogeneous plasmas

In reality, plasmas in which stimulated Raman scattering occurs are inhomoge-
neous, often over short scale lengths. Under such conditions the extent of the
region of instability is localized on account of phase matching or the finite range
of the pump. Phase mismatch introduces a new loss mechanism on account of
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the convection of wave energy away from the localized resonances. In practice,
convective loss is usually dominant over collisional and Landau damping. The
question that then arises is whether SRS is an absolute or a convective instability.
In other words, do the Raman daughter waves propagate away from the interaction
region after reaching some maximum amplitude or do they continue to grow within
the domain of instability? We shall find that convective losses suppress the absolute
(temporal) growth found for the homogeneous plasma.

To keep the analysis as simple as possible we limit the plasma density inho-
mogeneity to one direction only, i.e. n0(r) = n0(x) and assume that the ions are
stationary. Moreover we consider only the case of normal incidence so that the
electric fields of both the incident and Raman scattered light waves are polarized
parallel to one another. The WKBJ representation of the laser pump may then be
written(

E0(x, t)
B0(x, t)

)
= 2√

k0(x)

(
E0ŷ
B0ẑ

)
cosψ v0(x, t) = 2√

k0(x)
v0ŷ sinψ

(11.30)

with ψ = ∫ x k0(x)dx − ω0t and ω2
0 = ω2

p(x) + k2
0(x)c

2. For convenience we

suppress the WKBJ swelling factor k−1/2
0 , identifying the laser field as the local

field at the Raman resonance. The first-order perturbation procedure proceeds as
in the homogeneous case and now generates the set of equations (in which primes
denote ∂/∂x and dots ∂/∂t):

ṅ + [n0(x)v]′ = 0
1

c2
Ės + B ′

s − µ0en0(x)vs

= µ0env0(x, t)

v̇ + eE

m
+ 3V 2

e

n0(x)
n′ + νv v̇s + eEs

m
+ νvs = 0

= −[v0(x, t)vs]′

E ′ + en

ε0
= 0 E ′

s + Ḃs = 0




(11.31)

The structure of this set of equations shows the linear characteristics of the Lang-
muir wave and scattered light wave on the left-hand side with the non-linear cou-
pling through the action of the laser pump on the right. The scattered wave can
propagate either backwards (stimulated Raman back-scatter, SRBS) or forwards
(stimulated Raman forward-scatter, SRFS).

In general the set of equations (11.31) has to be solved numerically. To carry this
through and obtain time-asymptotic solutions we first Laplace-transform (11.31).
It is straightforward to eliminate v and Es from the Laplace-transformed equations
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and convenient to cast the reduced set in normalized form. Times and veloci-
ties are normalized to ω−1

0 and c respectively and in addition eE/mcω0 → E ,
eBs/mω0 → Bs and e2(n0, n)/mε0 → (ω2

p(x), n). In this form the frequency
matching condition now reads ω + ωs = 1. The set of first-order equations then
takes the form (see Barr, Boyd and Mackwood (1994))

E ′ + n = 0 v′
s − p1

p1 + ν
Bs = 0

3V 2
e n′ + [p2

2 + 2γ2 p2 + ω2
p(x)]E B ′

s − [p2
1 + p1ν + ω2

p(x)]vs

= ω2
p(x)[v0(x)vs]′ = −v∗

0(x)n




(11.32)

While the set of first-order equations is convenient for numerical integration, one
can of course recover the coupled second-order equations for comparison with the
homogeneous plasma equations. These follow directly from (11.32) on eliminating
n and Bs to give

3V 2
e E ′′ + [ω2 + 2iγpω − ω2

p(x)]E = −ω2
p(x)[v0(x)vs]′ (11.33)

v′′
s + [ω2

s − 2iγsωs − ω2
p(x)]vs = v∗

0(x)E
′ (11.34)

Here γp(≡ γ2) = γL + ν/2, γs = νω2
p/2ω2

s , p1 = iωs , p2 = −iω. WKBJ
solutions to (11.33) and (11.34) may be used provided the plasma density is only
weakly inhomogeneous in the sense described in Section 11.2 and provided the
Raman resonance is not in the neighbourhood of a turning point, i.e. at densities
well below the quarter-critical density. Consider a Raman resonance at x = xr

where local wavenumber matching is satisfied, k0(x) = k(x)+ ks(x), with slowly
varying amplitudes ap and as defined such that

E = rap(x)

i
√

k(x)
exp

[
i
∫

k(x)dx

]
vs = sas(x)√

ks(x)
exp

[
−i
∫

ks(x)dx

]
(11.35)

where r = (kωp/ω)
1/2, s = (ks/ωsωp)

1/2 evaluated at x = xr are constants.
The WKBJ equations reduce to (see Exercise 11.10)

Vpa′
p + (γ + γp)ap = γ0e−iψas (11.36)

Vsa
′
s + (γ + γs)as = γ0eiψap (11.37)

where ψ = ∫
K (x)dx and K (x) = k0(x) − k(x) − ks(x) is the wavenumber

mismatch with K (xr) = 0; Vp, Vs denote the group velocities of the Langmuir and
Raman scattered waves respectively. Resonant coupling is lost once a significant
phase shift builds up. For a homogeneous plasma ψ = 0 and the growth rate of
(11.29) is recovered. If we now combine the two WKBJ equations into a single
second-order differential equation for (say) as , neglecting the spatial dependence
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of Vp and Vs , setting as = a exp(
∫
α dx) where

α = −1

2
[(p + γp + i K Vp)/Vp + (p + γs)/Vs]

one may show that

a′′ −
{

1

4

[
p + γp + i K Vp

Vp
− p + γs

Vs

]2

+ i K ′

2
+ γ 2

0

VpVs

}
a = 0 (11.38)

For Raman back-scatter (VpVs < 0) from a localized source there is a regime of
convective Raman growth (p = 0) provided

γ 2
0

|VpVs | ≤ 1

4

(
γp

Vp
+ γs

Vs

)2

(11.39)

Note that no convective growth is possible in the absence of damping. If the in-
equality sign in (11.39) is reversed, then stimulated Raman back-scatter (SRBS)
may grow absolutely with a growth rate

γA = 2
√

Vs Vp

(Vp + Vs)
γ0 −

(
Vpγs + Vsγp

Vp + Vs

)
(11.40)

If we now allow a finite mismatch and consider in particular the case where this
is linear we find that WKBJ theory shows that temporal growth is choked by con-
vection so that only spatial amplification (convective gain) is possible. Expanding
K (x) about the Raman resonance and discarding wave damping, (11.38) becomes

a′′ −
{

1

4

[
p

Vp
− p

Vs
+ i K ′(0)x

]2

+ i

2
K ′(0)+ γ 2

0

VpVs

}
a = 0 (11.41)

For neither SRBS nor SRFS are solutions with �p > 0 possible so that the
instability is always convective (p = 0). Setting y = (K ′(0))1/2x , (11.41) reduces
to

d2a

dy2
+
(

y2

4
− i

2
± λ

)
a = 0 (11.42)

where

λ = γ 2
0

K ′(0)|VpVs | ≡ 1

K ′(0)L2
g

(11.43)

defining a threshold scale length Lg for convective gain. In this form we see that the
solution depends only on the parameter λ; ±λ refer to SRBS, SRFS respectively.
Solutions to (11.38) may be found in terms of parabolic cylinder functions but all
that is needed here is an estimate of the maximum convective amplification. The
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detuning of the Raman resonance condition is measured by the phase factor ψ(x)
and a resonance width l is defined by∫ l

0
K (x)dx =

∫ l

0
K ′(0)x dx = π

2

so that

l =
√

π

K ′(0)
(11.44)

Only if l > Lg will convective amplification be significant. A convective thresh-
old is conventionally taken as that intensity which results in a gain of exp(2π),
sometimes referred to as the Rosenbluth gain (Rosenbluth (1972)). Thus the gain
is

CG = exp

(
2πγ 2

0

VpVs K ′(0)

)
(11.45)

and the convective threshold condition is expressed as

γ 2
0

VpVs K ′(0)
= 1 (11.46)

For a linear density profile with ω2
p(x) = ω2

p(1 + x/L) the threshold for SRBS is
then (v0

c

)2
k0L = 1 (11.47)

Early in the evolution of SRS, waves grow at the absolute growth rate from
some initial localized noise source at the source point until such time as the waves
transit the resonance. At this point the waves become aware of the finite extent of
the resonance and temporal growth is saturated. Thereafter waves grow spatially
(amplify) as they propagate across the resonance with both decay waves amplified
in the back direction for SRBS and in the forward direction for SRFS. In this steady
state the localized resonance acts as a convective amplifier.

For a given scattered frequency the resonant densities for SRBS and SRFS differ
by�n ∼ n(V 2

e /c2), with SRFS occurring at the higher density. The two resonances
are not in fact independent though it has been conventional to treat them as if they
were. Wave propagation allows communication between resonances at different
locations, and this consideration in general results in quite distinct global behaviour
for the instability. Attention was first drawn to the need for non-local models of
parametric instabilities by Koch and Williams (1984) and later described in detail
by Barr, Boyd and Coutts (1988), who solved the full system of SRS equations.
The SRBS, SRFS amplifiers couple through the propagation of a plasma wave up
the density profile from the SRBS resonance to that for SRFS, together with the
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propagation of forward scattered light from the SRFS resonance to its reflection
density and then back to the SRBS resonance. The feedback loop established in
this way allows amplifiers, which are convective in the absence of feedback, to
grow temporally at those frequencies for which the two amplifiers are in phase.

11.5.3 Numerical solution of the SRS equations

The set of coupled equations (11.32) contains all the models that describe the
time-asymptotic state of linear SRS theory and have been solved by Barr, Boyd
and Mackwood (1994) for a plasma slab with appropriate boundary conditions.
The density profile within the slab is arbitrary and this region is bounded by
semi-infinite regions of homogeneous plasma. In these regions the four first-order
equations may be solved exactly, the solutions corresponding to left and right
propagating electromagnetic and Langmuir waves. In the presence of a pump
field the solutions are coupled and hence are neither purely electromagnetic nor
electrostatic. The set of equations (11.32) is solved in two distinct forms. Solution
as an eigenvalue problem determines the complex eigenfrequencies; in this case all
initial value terms are set equal to zero and the equations form a (mathematically)
homogeneous system. The second form of solution determines convective gain
factors at frequencies distinct from the eigenvalues and for this, initial value source
terms have to be retained.

A range of physical parameters was chosen to exploit the many features of the
model. A linear density ramp overdense to forward scattered light was used to allow
for feedback. The parameters essential for interpreting SRS characteristics and en-
abling comparisons to be made with experiment include the Landau damping of the
Langmuir wave, the collisional damping of both daughter waves, the convection of
each wave, the degree of feedback between back- and forward-scattering amplifiers
and the physical extent of the feedback loop.

Figure 11.7 shows the threshold contour CG = exp 2π for Raman back-scatter.
This shows two distinct regimes separated at a scattered frequency ωs = 0.63ω0.
The approximately horizontal section of the gain contour at lower frequencies
agrees well with the convective gain predicted by (11.45). At frequencies ωs =
0.65ω0 the steep rise in threshold corresponds to the onset of a cut-off produced
by Landau damping. A rule of thumb is often applied for the onset of Landau
damping when kλD = 0.3 which, for the temperature used to produce these results,
corresponds to ωs = 0.7ω0. Note that this cut-off is not predicted by the convective
damping threshold (11.28) which gives zero threshold in the absence of collisions.
Figure 11.8 plots the threshold predicted by (11.29). There is good agreement
between the Landau cut-off seen here and the result in Fig. 11.7.

The absolute character of the instability is sustained over the whole range of
emission frequencies on account of the feedback between back- and forward-
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Fig. 11.7. Convective gain contour showing the threshold gain contour CG = exp 2π for
SRBS from a linear density ramp underdense to forward-scattered light.

Fig. 11.8. Thresholds predicted by (11.29) for SRS from plasmas with Z = 10 (——), 30
(– – –), 50 (— · —) and 79 (· · · · · ·).

Raman resonances discussed above. Figure 11.9 shows absolute Raman growth
rates as a function of ωs/ω0 for a Z = 10 plasma, with the corresponding thresh-
olds plotted in Fig. 11.10 which also shows thresholds for a Z = 79 plasma.
Raman scattering from quarter-critical density nc/4 shows the most rapid growth.
Figure 11.10 shows some differences between plasmas with low and high Z . For
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Fig. 11.9. Absolute SRS growth rates versus scattered frequency for a Z = 10 plasma for
v0/c = 0.1 (◦), 0.07 (�) and 0.04 (♦).

Fig. 11.10. Absolute SRS thresholds versus scattered frequency for Z = 10 (�) and Z =
79 (×) plasmas.

low Z (weak collisionality), thresholds increase only slowly with ωs up to the
onset of Landau cut-off. By contrast, absolute thresholds in the case of a strongly
collisional plasma rise steeply with ωs on account of the effects of damping on the
waves within the feedback loop. This proves to be the dominant effect so that no
Landau cut-off is evident for strongly collisional plasmas.
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11.6 Radiation from Langmuir waves

In this section we consider a laser–plasma interaction in the presence of a density
gradient so steep that WKBJ theory cannot be relied on to provide insights into the
physics. The interaction in question is one in which Langmuir waves are coupled to
the radiation field. Although longitudinal and transverse modes are always coupled
in inhomogeneous plasmas, the coupling is generally weak for plasmas in thermal
equilibrium. However, in plasmas in which a non-thermal spectrum of Langmuir
waves is excited, steep density gradients may lead to significant radiation from the
plasma over a narrow band around the plasma frequency.

Radiation by Langmuir waves first attracted attention in attempts at interpreting
the characteristics of certain types of emission from the Sun, in particular type III
solar radio noise. One of the striking characteristics of type III emission spectra is a
drift in frequency over time, predominantly from high to low frequencies. Not only
is the bandwidth narrow but in many instances a second harmonic band is observed.
These characteristics along with the sudden onset of the emission, are consistent
with a conjecture put forward by Wild (1950) to interpret type III emission. The
sequence of events starts with bursts of energetic electrons produced in solar flares
injected into the chromosphere, travelling outwards through the corona exciting
Langmuir waves in the coronal plasma. The sudden onset of type III bursts is
consistent with a threshold set by the collisional damping of Langmuir waves
in the colder and denser chromospheric plasma. Likewise the bandwidth of the
emission should reflect the narrow bandwidth of the Langmuir waves determined
by Landau damping. Wild’s original conjecture has since been supported by the
direct observation of both electron beams and the Langmuir waves they generate,
from satellite observations of type III bursts (see Lin et al. (1986)). The appearance
of a second harmonic in some, though by no means all, recorded type III spectra
is another signature pointing to Langmuir waves as the source of the emission. By
and large more is known about the excitation phase in which suprathermal levels of
Langmuir waves are generated, than the coupling phase, in which electrostatic en-
ergy is converted into radiation, with the generation of both a fundamental plasma
line and its second harmonic.

In a very different corner of parameter space, high intensity laser interactions
with dense plasmas afford another example of Langmuir waves coupling to the
radiation field. These interactions lead to jets of energetic electrons which can
excite suprathermal levels of Langmuir waves in the superdense plasma which
in turn may radiate in the very steep density gradients present. The fact that this
radiation is generated at the plasma frequency which, for sufficiently overdense
plasmas, is far above that of the incident light suggests that plasma emission may,
under suitable conditions, have potential as a source of XUV light.
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Fig. 11.11. Normalized frequency spectrum showing laser harmonics in reflection and
plasma line emission for a plasma with n/nc = 30 and a0 = 0.5; m = ω/ω0.

The problem of plasma emission was revisited by Boyd and Ondarza-
Rovira (2000) in PIC simulations of the interaction of moderately intense laser
light with slab plasmas of density up to 200 times critical density. Figure 11.11
shows the spectrum of back-reflected light from a plasma of density n/nc = 30
first observed by Ondarza-Rovira (1996). In this spectrum the plasma line at
ω/ω0 = (n/nc)

1/2 	 5.5 appears as a dominant feature against the background
of harmonics of the incident laser light, comparable in intensity to the third laser
harmonic. Moreover, the plasma line is in reality a broad feature in the spectrum
reflecting the fact that in practice there will be some plasma emission at normalized
frequencies up to (n/nc)

1/2. However, at lower densities the intensity is corre-
spondingly lower and is swamped by low harmonics of the incident laser light.
The spectrum in Fig. 11.11 shows that as the harmonic line spectrum weakens
beyond m = 5 the broad plasma line becomes increasingly dominant. There is
no clear indication of a second harmonic of the plasma line at 2ωp 	 11ω0,
due in part to the fact that this is a weak feature for the parameters chosen and
in part to the dominance of the broad feature that appears in the spectrum on
the blue side of the plasma line centred about ω 	 9ω0 with intensity about an
order of magnitude below that of the plasma line. This unexpected spectral detail
turns out to be a robust feature in the simulations. Figure 11.12 reproduces the
reflected spectrum from a plasma of density n/nc = 200, again showing a feature
at ω 	 1.5ωp with intensity about an order of magnitude weaker than the plasma
line. In addition a second harmonic of the plasma line appears in the spectrum with
a weak third harmonic, shifted slightly to the blue. Surprisingly, additional lines
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Fig. 11.12. Reflected harmonic spectrum for n/nc = 200 and a0 = 0.5.

Fig. 11.13. Electron trajectories for n/nc = 100 and a0 = 0.5.

appear at approximately fourth and fifth harmonics of the plasma line. The PIC
simulations showed clear evidence of electrons of relativistic energy from direct
forward acceleration by the v × B force at high intensities.

Figure 11.13 shows electron trajectories with electron velocities spread over a
wide band and moreover, evidence of beam-like behaviour, with electrons pene-
trating into the dense plasma. Across this region of penetration, Langmuir waves
excited by these electrons are detected. The simulations show strongly driven
Langmuir waves at the front edge of the plasma slab and this localization of the
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Langmuir spectrum is important for the subsequent coupling of the plasma waves
to the radiation field by means of the localized density gradient in the (perturbed)
peak density region.

Plasma emission from laser-produced plasmas has been observed by Teubner
et al. (1997) who detected a plasma line and a second harmonic although in fact
the harmonic appeared at a frequency a little over 1.6 times the fundamental. They
attribute the plasma line to surface emission and interpret the harmonic as due
to radiation from Langmuir plasmons in the interior where the plasma density is
assumed to be lower. On these grounds they expect the harmonic line to be more
intense than the fundamental. However, in the simulations by Boyd and Ondarza-
Rovira the opposite is the case, with the second harmonic typically between two
and four orders of magnitude weaker than the fundamental. If one recalls that the
line at ∼ 1.5ωp is between two and three orders of magnitude more intense than
the second harmonic it is possible that it is this feature which has been detected
by Teubner et al. given that the relative frequencies of the lines they observe are
approximately 1:1.6.

Other aspects of the emission have been reported by Lichters, Meyer-ter-Vehn
and Pukhov (1998) in simulations in which second and third harmonics of the
plasma line were seen but not the fundamental. Spectra were recorded after the
laser pulse had finished so that no laser harmonics are present. The absence of any
effect in the spectrum in the region of the feature found by Boyd and Ondarza-
Rovira suggests that the presence of the plasma line is critical for its appearance.

11.7 Effects in bounded plasmas

Boundedness and inhomogeneity in a sense go hand in hand since a bounded
plasma is always inhomogeneous to some degree. Any attempt to classify modes
as was done in Chapter 6 would be to miss an essential point about bounded, inho-
mogeneous plasmas where the boundary and the structure of the density profile are
integral in determining wave characteristics. Not only do plasma boundaries mod-
ify the dispersion characteristics of modes within the plasma (the ‘bulk’ modes) but
distinct modes may propagate along the surface of the plasma (‘surface’ waves) in
addition to bulk modes.

11.7.1 Plasma sheaths

We look next at the inhomogeneous layer that is formed where plasma is in contact
with a material boundary. Close to any wall or at any surface of contact with
plasma, a sheath is formed across which electron and ion densities no longer
balance. The reason for this stems from the very much greater mobility of electrons
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over ions (see Section 8.2.1). The net flux of electrons means that any surface in
contact with a plasma rapidly acquires a negative charge. The potential resulting
from this then acts to reduce the electron flux and enhance the flux of positive ions
to the surface until a stage is reached where the two balance and the net current
to the surface disappears. In this steady state the surface potential is known as the
floating potential.

Sheath dynamics is one of the classical problems of plasma physics having been
identified and largely resolved by Langmuir. It requires the solution of Poisson’s
equation along with the dynamical equations for both ions and electrons with
suitably chosen boundary conditions. The plasma parameters are strongly inho-
mogeneous across the sheath and inhomogeneity, added to the non-linearity of the
governing equations, means that a general solution can only be found numerically.
Exceptionally, in plane geometry an approximate analytical solution is possible.
The key approximation lies in the distinct assumptions made about electron and
ion dynamics. For the electron fluid, the pressure gradient is dominant over the
momentum term while for the ion fluid the reverse is the case, i.e. the ions are cold.
With these assumptions we may integrate the respective equations of motion for
the two fluids. For the electrons

ne(x) = n0 exp[eV (x)/kBTe] (11.48)

where V (x) is the electrostatic potential and we have made use of the boundary
condition V (x → ∞) = 0 and ne(x → ∞) = n0. Integrating the ion momentum
equation and the continuity equation gives, for a hydrogen plasma,

ni(x) = n0

[
1 − 2eV (x)

m iu2
0i

]−1/2

(11.49)

where u0i = ui(x → ∞). The spatial variation of electron and ion densities across
the sheath is illustrated in Fig 11.14. If we now make use of (11.48) and (11.49) in
Poisson’s equation we find

d2V (x)

dx2
= n0e

ε0

[
exp

(
eV (x)

kBTe

)
−
(

1 − 2eV (x)

m iu2
0i

)−1/2
]

(11.50)

This non-linear equation is the plasma sheath equation in plane geometry. Be-
fore integrating (11.50) it helps to rewrite it in terms of dimensionless variables

φ = − eV

kBTe
M = u0i

(kBTe/m i)1/2
ξ = x

λD
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Fig. 11.14. Sheath formation at a plasma boundary.

With these definitions (11.50) reads

d2φ

dξ 2
=
(

1 + 2φ

M2

)−1/2

− e−φ (11.51)

Multiplying by dφ/dξ allows us to integrate (11.51) once to give

1

2

(
dφ

dξ

)2

= M2

[(
1 + 2φ

M2

)1/2

− 1

]
+ (e−φ − 1) (11.52)

Note that (11.52) effectively determines φ(ξ) in terms of the ‘Mach number’ M .
A second integration can only be done numerically unless we make an additional
approximation. If we confine our attention to the plasma side of the sheath where
φ is small we may approximate (11.52) by(

dφ

dξ

)2

=
(

1 − 1

M2

)
φ2 (11.53)

which has a monotonic solution provided M2 > 1. In other words

u0i >

(
kBTe

m i

)1/2

(11.54)
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a result due to Bohm (1949) and known as the Bohm sheath criterion. A sheath
forms at a material boundary provided the streaming velocity of ions entering the
region close to a wall exceeds the ion acoustic velocity cs.

If we return to (11.51) and approximate conditions within the sheath proper by
supposing that we may neglect the electron contribution (this would only be valid
for a wall or probe surface at a high enough negative potential, |φ| 
 1) then
(11.51) reduces to

d2φ

dξ 2
	 M

(2φ)1/2
(11.55)

Integrating (11.55) twice across the sheath, assuming dφ/dξ = 0 at the edge,
confirms that the sheath is typically a few Debye lengths thick.

11.7.2 Langmuir probe characteristics

This outline of sheath properties enables us to understand and interpret Langmuir
probe characteristics. Langmuir probes provide reliable electron temperature and
density diagnostics in relatively cool, low-density plasmas. The probe itself is a
small metal electrode – cylindrical, spherical or in the shape of a disk – inserted
into the plasma. The sheath that envelops the probe shields the plasma from the
probe potential.

The essence of the Langmuir probe technique is to monitor the current to the
probe as the probe voltage changes. Assuming that current is positive when it flows
out from the probe, ion current drawn to the probe will be negative. The probe
characteristic is shown in Fig. 11.15 as a current–voltage plot. For a potential more
negative than the floating potential Vs the electron contribution to the currrent drops
off until the probe draws only ion current given by the Bohm value, i.e.

Iis = 1

4
ni0e〈u0i〉A = 1

2
niseA

(
2kBTe

πm i

)1/2

(11.56)

Here nis denotes the plasma ion density at the edge of the sheath and A the surface
area of the probe. If we choose the sheath edge to be the point at which u0i ≡
2(2kBTe/πm i)

1/2 and with a potential Vs 	 −kBTe/2e relative to the plasma then
nis 	 nes so that

nis = n0 exp(eVs/kBTe) 	 0.6n0

The Bohm ion saturation current I B
i is therefore

I B
i 	 0.24n0eA

(
kBTe

m i

)1/2

(11.57)
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Fig. 11.15. Langmuir probe characteristic showing the variation of the probe current with
probe potential.

Thus once the electron temperature is known, the Bohm saturation current deter-
mines the plasma density.

As V becomes less negative with respect to the plasma, energetic electrons from
the tail of the distribution are collected by the probe until, at the floating potential
Vs , electron and ion currents cancel one another. A further increase in V leads to
a steep rise in electron current which eventually saturates at space potential, the
potential of the plasma Vp 	 0.

Consider the Langmuir characteristic in the region Vs < V < Vp in which
electron current is drawn. Over this region the electron sheath shields the probe
from electrons other than those with sufficient energy to overcome the potential
barrier. The electron current to the probe is then the random current, reduced by
the Boltzmann factor, i.e.

Ie = n0eA

2

(
2kBTe

πme

)1/2

exp

[
eV

kBTe

]
(11.58)

so that the total current drawn to the probe is

I = Ie + I B
i (11.59)
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From the slope of the characteristic we can determine the electron temperature.
From (11.58), (11.59)

dI

dV
= e

kBTe
Ie + dIi

dV

If we use the region of the characteristic where the slope is greatest we may
disregard dIi/dV so that

Te = e

kB
(I − I B

i )/
dI

dV
(11.60)

This can be determined directly from the characteristic by measuring its slope as
shown in Fig. 11.15.

The Langmuir probe technique is a versatile diagnostic in plasmas of moderate
density and temperature. If the density is high enough for electron and ion mean
free paths to become comparable to probe dimensions the model is no longer valid.

Exercises

11.1 Consider a light wave propagating along Oz in a plasma of increasing
density n(z). By appealing to the conservation of energy flux show that
|E(z)| = E0/ε

1/4 where E0 denotes the amplitude of the electric field in
vacuo and ε is the plasma dielectric function. Compare this result with the
WKBJ field amplitude. How is |B(z)| related to B0?

11.2 Show that the validity condition for WKBJ solutions to the wave equation
may be expressed as

1

k2

∣∣∣∣∣34
(

1

n2

dn

dz

)2

− 1

2n3

d2n

dz2

∣∣∣∣∣� 1

11.3 Express ∂k/∂t = −∇ω as

∂ω

∂r
+ ∇k · ∂ω

∂k
+ ∂k

∂t
= 0

and by considering the dispersion relation as a function of k, r and t , i.e.
D (ω (k, r, t) , k, r, t) = 0 so that

∂D

∂k
+ ∂D

∂ω

∂ω

∂k
= 0

∂D

∂r
+ ∂D

∂ω

∂ω

∂r
= 0

∂D

∂t
+ ∂D

∂ω

∂ω

∂t
= 0

establish the set of equations (11.8) that determine ray trajectories.
11.4 Verify the steps leading to the reflection coefficient R given by (11.12).

Note that the representation for Ai(ζ ) valid for arg ζ = π is

Ai(ζ ) ∼ 1

2
π−1/2ζ−1/4

[
exp

(
−2

3
ζ 3/2

)
+ i exp

(
2

3
ζ 3/2

)]
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11.5 Consider an electromagnetic wave propagating along the density gradient
in a plasma in which the electron density varies as n(z) = nc(z/L). From
the analysis outlined in Section 11.2.1, the electric field is determined by
the Airy function Ai(ζ ) shown in Fig. 11.2.

By matching this electric field to the vacuum electric field at z = 0,
show that

E(ζ ) =
√

2π(k0L)1/6 E0eiφ Ai(ζ )

where E0 is the amplitude of the vacuum field and φ is a phase factor. The
Airy function Ai(ζ ) has a maximum value 0.535 at ζ = −1 corresponding
to z = L

{
1 − (k0L)−2/3

}
. Show that∣∣∣∣Emax

E0

∣∣∣∣
2

	 1.8(k0L)1/3

which provides an estimate of the swelling of the electric field as the wave
approaches the cut-off.

Estimate the swelling of the WKBJ electric field by representing εmin

as the value of ε averaged over a half wavelength near cut-off. Show that
εmin 	 (πc/ωL)2/3. Hence show that |Emax/E0|2 	 1.4(k0L)1/3.

In contrast to the WKBJ approximation in which kc = 0 it is possible to
define a local incident wavenumber kA from the Airy solution. Show that
kA 	 0.6k2/3L−1/3.

11.6 Consider a light wave incident obliquely on a plasma slab. Take Oyz to be
the plane of incidence and the angle of incidence θ = cos−1(k̂ · ẑ). In the
case of oblique incidence we have to distinguish between two polarization
states, S and P, in which E is respectively perpendicular to, and coplanar
with, the plane of incidence. For an S-polarized wave the wave electric
field gives rise to electron oscillations in the x-direction, along which the
density is uniform. The electric field of a P-polarized wave on the other
hand causes electrons to oscillate across regions of non-uniform density;
in this case the wave is no longer purely electromagnetic.

For S-polarized light show that the results of Exercise 11.5 carry over
after making allowance for the fact that reflection now takes place at
ε(z) = sin2 θ , i.e. reflection takes place at a density below critical, where
ne = nc cos2 θ .

By contrast, a P-polarized wave at its cut-off has its electric field aligned
along the density gradient and, provided the separation between cut-off and
resonance is not too large, some fraction of the incident electric field can
tunnel through to the resonance and excite a Langmuir wave. Interactions
between resonant electrons and the Langmuir wave excited in this way
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result in resonant absorption of the incident radiation. To estimate the
electric field Ez along the direction of the density gradient near the crit-
ical density, first express Ez(z) = [B(z) sin θ ]/[cε(z)] = Ed(z)/ε(z). To
determine the resonant field one has to find B(L). A simple way of doing
this uses a physical argument given by Kruer (1988), which represents
B(L) by its value at the turning point, B(L cos2 θ) multiplied by a factor
to allow for the exponential decay from cut-off to resonance. Show that

B(L cos2 θ) 	 0.9E0

c

( c

ωL

)1/6

where E0 is the intensity of the electric field in vacuo. The decay of
the field beyond cut-off may be represented by a factor e−β where

β = (1/c)
∫ L

L cos2 θ

(
ω2

p − ω2 cos2 θ
)1/2

dz. Evaluate β and show that

Ed(L) 	 0.9E0

( c

ωL

)1/6
sin θ exp

(
−2ωL sin3 θ

3c

)

Defining τ = (ωL/c)1/3 sin θ , show that this may be written

Ed(L) = E0

(2πωL/c)1/2
φ(τ)

where the shape function φ(τ) 	 2.3τ exp(−2τ 3/3).
Note that Ed(L) → 0 as τ → 0, i.e. θ → 0. Similarly for large

τ , Ed(L) → 0 corresponding to the cut-off occurring at too low a
density for the wave to tunnel effectively to the critical density surface.
Between these limits there is an optimum angle of incidence given by
(ωL/c)1/3 sin θ 	 0.8. The shape function found from this heuristic argu-
ment provides a good approximation to the numerical solution of the wave
equation (see Denisov (1957)).

11.7 Following linear conversion to Langmuir waves the electrostatic field en-
ergy is resonantly transferred to electrons by means of Landau damping.
Representing damping phenomenologically we may write

ε(z) =
(

1 − z

L

)
+ iν

ω

( z

L

)
Show that the energy flux that is resonantly absorbed, IRA = fRA I0, is
determined by

IRA = 1

2
ε0ν

∫ zr

zc

E2
d(z)

|ε(z)|2 dz
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where zc, zr denote C- and R-points. Show that this reduces to (Kruer
(1988))

IRA = φ2

4

(ε0

2
cE2

0

)
= fRA

(ε0

2
cE2

0

)
so that IRA = 1

4φ
2 I0. Simulations of absorption of P-polarized light con-

firm that resonance absorption of about 40% takes place.

11.8 The frequency and wavenumber matching conditions for forward and
backward Raman scattering are ω0 = ωL + ωs, k0 = kL ± ks , where the
plus sign denotes SRFS and the minus, SRBS. Show that the wavenumber
matching conditions may be written

ω0

c

(
1 − n

nc

)1/2

= kL ± ωs

c

(
1 − ω2

0

ω2
s

n

nc

)1/2

In the limit kLλD � 1 show that ks 	 (ω0/c)(1 − 2ωp/ω0)
1/2 so that

(
1 − n

nc

)1/2

	 kLc

ω0
±
(

1 − 2

√
n

nc

)1/2

From this it is clear that SRS matching conditions can only be satisfied
for densities up to quarter-critical, nc/4. At this density ks 	 0 so that
kL ∼ k0 = (

√
3ω0/2c). For densities much below nc/4, show that

kL 	 ω0

c
∓ ω0

c

(
1 −

√
n

nc

)

Thus for SRBS at very low densities kL = 2k0, while for SRFS, kL = ωp/c.

11.9 Carry out a first-order perturbation analysis on the electron fluid equations
to obtain the SRS coupled equations (11.23), (11.24) for a homogeneous
plasma. Fourier analyse these equations to find the SRS dispersion relation
(11.25).

Show that the maximum homogeneous Raman growth rate is given by
(11.26). Allowing for damping of the Langmuir wave and the scattered
light wave confirm that the Raman growth rate is now given by (11.29).

11.10 Recover (11.33) and (11.34), the second-order SRS equations for an inho-
mogeneous plasma, from (11.32).

Show that the WKBJ equations for an inhomogeneous plasma are given
by (11.36) and (11.37). By combining these equations establish (11.38).
Show that the convective gain is given by (11.45). In the case of a linear
density profile with scale length L confirm that the SRBS threshold is
determined by (11.47).
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11.11 A plasma is contained in the right half-space x > 0, i.e. a density step from
n = 0 to n = n0 appears at x = 0. Consider a surface wave in which the
electric field is electrostatic with the potential

φ(x, y, t) = φk(x) exp i(ky − ωt)+ c.c.

Show that φk(x) = φs exp(−|k|x) where φs denotes the potential at the
boundary. Applying boundary conditions at x = 0 show that the dispersion
relation for the electrostatic surface wave is ω2 = ω2

p/2.

Show that in the case of electromagnetic surface waves in the short
wavelength limit, the surface wave dispersion relation becomes

k2c2

ω2
= ω2

p − ω2

ω2
p − 2ω2

11.12 Tonks and Langmuir (1929) found that in a cylindrical discharge plasma
the principal resonance appeared at ωp/

√
2. Subsequently Romell (1951)

observed in addition a series of weaker resonances, later studied by Dattner
(1957, 1963) and others and known as Tonks–Dattner resonances.

Consider a slab of plasma of uniform density n0 and thickness 2L ,
unbounded in the other two dimensions. Show that the set of resonant
frequencies ωm is given by

ω2
m = ω2

p

[
1 + 3 (m + 1/2)2 π2λ

2
D

L2

]

where λD is the Debye length. This result predicts a spacing
(
�ωm/ωp

)
which is an order of magnitude too small. To fix this one has to take
account of plasma inhomogeneity.

Starting from the fluid model of a warm plasma (6.86)–(6.88) with a
perturbation scheme defined by

n(x, t) = n0(x) + n1(x)e−iωt E(x, t) = E0(x) + E1(x)e−iωt

v(x, t) = 0 + v1(x)e−iωt p(x, t) = p0(x) + p1(x)e−iωt

}

show that, to first order, the perturbation in electron density is determined
by

d2n1

dx2
+ k2(x)n1 = e

3mV 2
e

[
d

dx
(n1 E0)+ E1

dn0

dx

]

If we denote the scale length of the inhomogeneity by L show that the



Exercises 463

terms on the right-hand side are typically (1/kL) times those on the left so
that

d2n1

dx2
+ 1

3λ2
D0

[
ω2 − ω2

p(x)

ω2
p0

]
n1 	 0 (E11.1)

where ωp0, λD0 denote the electron plasma frequency and the Debye length
at the centre of the plasma. This model shows that electron plasma waves
can now propagate in the region between the boundary and a point xc at
which the plasma density becomes critical, i.e. n(xc) = nc. Since we have
already assumed that the density scale length is much greater than the
electron plasma wavelength we may use a WKBJ approximation to find
the eigenvalues∫ xc

0
k(x)dx =

(
m + 3

4

)
π m = 0, 1, 2, . . . (E11.2)

Useful as this electrostatic model is, it too fails when it comes to inter-
preting the spectra observed experimentally. Work by Parker, Nickel and
Gould (1964), in which neither the electrostatic assumption nor the WKBJ
approximation was made, determined the spectrum of resonances numeri-
cally for a cylindrical plasma column and compared these results with their
measured spectra. Refer to their paper for the satisfactory agreement they
found between theory and experiment.

11.13 By integrating (11.55) twice across the sheath and taking dφ/dξ = 0 at
the edge show that the sheath is typically a few Debye lengths thick.
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The classical theory of plasmas

12.1 Introduction

In this final chapter an attempt is made to sketch the classical mathematical struc-
ture underlying the various theoretical models which have been used throughout
the book. The knowledge of where a particular model fits within the overall picture
helps us both to understand the relationship to other models and to appreciate its
limitations. Of course, we have touched upon these relationships and limitations
already so the task remaining is to construct the framework of classical plasma
theory and show how it all fits together.

Since collisional kinetic theory is the most comprehensive of the models that we
have discussed we could begin with it as the foundation of the structure we wish to
build. Indeed, we shall demonstrate its pivotal position. This would, however, be
less than satisfactory for two reasons. The first and basic objection is that, so far,
we have merely assumed a physically appropriate model for collisions. We have
not carried out a mathematical derivation of the collision term. In fact, enormous
effort has gone into this task though we shall present only a brief resumé. In
doing so, we shall show how the separation of the effects of the Coulomb force
into a macroscopic component (self-consistent field) and a microscopic component
(collisions) appears quite naturally in the mathematical derivation of the collisional
kinetic equation. This is the second reason for starting at a more fundamental level
than the collisional kinetic equation itself.

To lighten the burden of the mathematical analysis we have, wherever con-
venient, restricted calculations to a one-component (electron) plasma. The ions,
however, are not ignored but treated as a uniform background of positive charge.
Electrons interact with the ions but this appears as a ‘field’ rather than an inter-
particle interaction. Extensions of important formulae to multi-component plasmas
are given at appropriate places in the text.

464
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12.2 Dynamics of a many-body system

Going back to first principles and assuming, for simplicity, that the motion of the
N electrons in a plasma obeys the laws of classical mechanics, we may write down
N Newtonian equations

mR̈i (t) = Fi (t) (i = 1, 2, . . . , N ) (12.1)

in which m is the electron mass, Ri (t) is the position of the ı th electron at time t
and Fi (t)is the force it experiences at that position and time. Formal solutions of
these N equations are

Ṙi (t) = Ṙi (0)+ 1

m

∫ t

0
Fi (t

′) dt ′

Ri (t) = Ri (0)+ Ṙi (0)t + 1

m

∫ t

0
dt ′
∫ t ′

0
Fi (t

′′) dt ′′

(i = 1, 2, . . . , N ) (12.2)

In principle, this completely determines the motion of the plasma. In practice,
it is impossible to carry out the integrations in (12.2) since Fi is, in general, a
function of the positions and velocities of all the plasma particles; the N vector
equations (12.1) are coupled in a very complicated way. Moreover, even if the
forces were sufficiently simple that one could do the integrations, there would never
be sufficient information to supply the required 2N initial conditions Ri (0), Ṙi (0)
(i = 1, 2, . . . , N ).

Turning now to a description of the plasma in terms of distribution functions, the
exact N-particle distribution function f ex

N (r1, v1, . . . , rN , vN , t) is given by

f ex
N (r1, v1, . . . , rN , vN , t) =

N∏
i=1

δ[ri − Ri (t)]δ[vi − Ṙi (t)] (12.3)

since (12.2) formally prescribes the position and velocity of each particle. Taking
the partial derivative of f ex

N with respect to t and using (12.3) we get

∂ f ex
N

∂t
=

N∑
i=1

[
Ṙi · ∂ f ex

N

∂Ri
+ R̈i · ∂ f ex

N

∂Ṙi

]

= −
N∑

i=1

[
Ṙi · ∂ f ex

N

∂ri
+ R̈i · ∂ f ex

N

∂vi

]



466 The classical theory of plasmas

since ∂δ(x − y)/∂y = −∂δ(x − y)∂x . However, f ex
N is zero unless Ṙi = vi and

from (12.1) R̈i = Fi/m so this may be written

∂ f ex
N

∂t
+

N∑
i=1

[
vi · ∂ f ex

N

∂ri
+ Fi

m
· ∂ f ex

N

∂vi

]
= 0 (12.4)

So far the description of plasma motion by (12.4) is equivalent to that given by
(12.1). However, the lack of information concerning initial conditions leads us to
seek a statistical interpretation of the distribution function. Since the initial con-
ditions are unknown, probability considerations may be applied to them. Instead
of the distribution function at t = 0 being zero everywhere except at a single
point in the 6N -dimensional phase space (r1, v1, . . . , rN , vN ) it will be given by
a smoother function fN (r1, v1, . . . , rN , vN , t = 0) which is an ensemble average
over the many possible (but unknown) initial starting points in phase space. As
time evolves, each initial point traces out a locus in phase space, determined by the
dynamics of the system, thus prescribing fN (t), which we define by the statement
that fN (r1, v1, . . . , rN , vN , t)

∏N
i=1 dri dvi is the probability of finding the system

within the volume element
∏N

i=1 dri dvi about the point (r1, v1, . . . , rN , vN ) at time
t . Replacing the exact distribution function f ex

N by fN in (12.4) then gives the
Liouville equation

L N fN = 0 (12.5)

where the Liouville operator

L N ≡ ∂

∂t
+

N∑
i=1

[
vi · ∂

∂ri
+ Fi

m
· ∂

∂vi

]
(12.6)

The Liouville equation is the starting point for a statistical description of a many-
body system and, for a classical system, is usually written

∂ fN

∂t
+ [ fN , H ] = 0 (12.7)

where H is the Hamiltonian of the system and the Poisson bracket

[ fN , H ] ≡
N∑

i=1

[
∂ fN

∂qi
· ∂H

∂pi
− ∂ fN

∂pi
· ∂H

∂qi

]

qi , pi being the generalized coordinates and momenta. For the non-relativistic
plasma that we consider

H =
N∑

i=1

p2
i

2m
+ V (q1, q2, . . . ,qN , t) (12.8)
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with qi = ri , pi = mvi and Fi = −∂V/∂ri from which the equivalence of (12.7)
and (12.5) is easily demonstrated.

The aim now is to integrate (12.5) over most of the space coordinates ri and
velocities vi to obtain equations for reduced distribution functions (containing less
information) which we may hope to determine. The reduced distribution functions
are defined by

fs(r1, v1, . . . , rs, vs, t) = N !

(N − s)!

∫
fN

N∏
i=s+1

dri dvi (12.9)

where the normalization constant has been chosen because there are N !/(N − s)!
ways of choosing s electrons from a total of N . This choice introduces a second,
rather more subtle, change in the nature of the distribution functions that we are
seeking. The first change from f ex

N to fN acknowledged the fact that we cannot ever
know the exact starting point in phase space so it makes more sense to consider a
distribution of initial points fN (t = 0) leading to a corresponding distribution
fN (t) at any later time. Of course, fN is supposed to be chosen to be consistent with
whatever information we do have about the plasma, but since such ‘macroscopic’
detail usually involves just one, or at most two, space and velocity coordinates that
leaves much uncertainty about fN . It is this indeterminate detail that we eliminate
by integrating over most of the phase space coordinates. Now, by our choice of
normalization constant in (12.9), we recognize that it makes no sense to talk
about specific electrons, labelled 1, 2, . . . , s being at (r1, v1), (r2, v2), . . . , (rs, vs),
respectively, but only about the probability of finding (any) electrons at these
coordinates since we have no way of distinguishing one electron from another.
The reduced distribution functions defined by (12.9) are sometimes called generic
distribution functions as opposed to the specific distribution functions which would
be defined by the choice of unit normalization constant.

Integrating (12.5) over all but s spatial and velocity coordinates, assuming that
fN vanishes on the boundaries of phase space and that the only velocity-dependent
forces are Lorentzian, we obtain

∂ fs

∂t
+

s∑
i=1

vi · ∂ fs

∂ri
+ N !

(N − s)!m

s∑
i=1

∫
Fi · ∂ fN

∂vi

N∏
j=s+1

dr j dv j = 0 (12.10)

Separating Fi into what we may call its internal component Fint
i (the force due to

all the other electrons) and external component Fext
i (the force due to the ions and

any applied fields) it follows that

N !

(N − s)!m

∫
Fext

i · ∂ fN

∂vi

N∏
j=s+1

dr j dv j = 1

m
Fext

i · ∂ fs

∂vi
(i = 1, 2, . . . , s) (12.11)
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since Fext
i may be taken outside the integral. In the non-relativistic approximation

considered here, the only internal forces are electrostatic

Fint
i = e2

4πε0

N∑
j=1
j �=i

ri − r j

|ri − r j |3 = −
N∑

j=1
j �=i

∂φi j

∂ri
(12.12)

where

φi j = e2

4πε0|ri − r j | (12.13)

Hence

N !

(N − s)!m

s∑
i=1

∫
Fint

i · ∂ fN

∂vi

N∏
j=s+1

dr j dv j

= 1

m

s∑
i=1

s∑
j=1
j �=i

∂φi j

∂ri
· ∂ fs

∂vi
− 1

m

s∑
i=1

∫
∂φis+1

∂ri
· ∂ fs+1

∂vi
drs+1 dvs+1

(12.14)

where we have separated the sum over j in (12.12) into the first s terms and the
remaining (N − s) terms and then made use of the fact that all of the latter are
identical. Substituting (12.11) and (12.14) into (12.10) gives the general equation
for the reduced distribution functions. Using (12.6) this may be written

Ls fs = 1

m

s∑
i=1

∫
∂φis+1

∂ri
· ∂ fs+1

∂vi
drs+1 dvs+1 (s = 1, 2, . . . , N − 1) (12.15)

In (12.15) Ls is the Liouville operator for s electrons and the right-hand side
represents electron interactions. We can see immediately the fundamental prob-
lem with this set of equations. The equation for fs contains fs+1 so that the
system closes only with the Liouville equation (12.5) and no simplification has
yet been achieved. This is not surprising since no approximations have been in-
troduced thus far and the problem is therefore the one with which we started.
The chain of equations represented by (12.15) is called the BBGKY hierarchy
after Bogolyubov (1962), Born and Green (1949), Kirkwood (1946), and Yvon
(1935).

To reduce the complexity of the theoretical description we want, in principle,
some physical approximation enabling us to write fs+1 in terms of f1, f2, . . . , fs

for some small value of s, so obtaining a solvable set of equations – that is, a set of
s equations, s − 1 of which may be used to eliminate f2, . . . , fs leaving a single
(kinetic) equation for f1. Even for s = 2 this is a formidable task. Putting s = 1, 2
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in (12.15) the pair of equations is

∂ f1

∂t
+ v1 · ∂ f1

∂r1
+ Fext

1

m
· ∂ f1

∂v1
= 1

m

∫
∂φ12

∂r1
· ∂ f2

∂v1
dr2 dv2 (12.16)

∂ f2

∂t
+ v1 · ∂ f2

∂r1
+ v2 · ∂ f2

∂r2
+ Fext

1

m
· ∂ f2

∂v1
+ Fext

2

m
· ∂ f2

∂v2
− 1

m

∂φ12

∂r1
·
(
∂ f2

∂v1
− ∂ f2

∂v2

)

= 1

m

∫ (
∂φ13

∂r1
· ∂ f3

∂v1
+ ∂φ23

∂r2
· ∂ f3

∂v2

)
dr3 dv3

(12.17)

where we have used ∂φ12/∂r1 = −∂φ12/∂r2 in (12.17).

12.2.1 Cluster expansion

As a first step towards the expression of f3 in terms of f1 and f2 we introduce the
cluster expansion by means of which we define new functions f , g and h such that

f1(r1, v1, t) ≡ f (1) (12.18)

f2(r1, v1, r2, v2, t) = f (1) f (2)+ g(1, 2) (12.19)

f3(r1, v1, r2, v2, r3, v3, t) = f (1) f (2) f (3)+ f (1)g(2, 3)+ f (2)g(3, 1)

+ f (3)g(1, 2)+ h(1, 2, 3) (12.20)

For convenience we have also simplified the notation, suppressing the time depen-
dence in f, g, h and writing (1) for (r1, v1), (2) for (r2, v2), etc. The idea behind the
cluster expansion is easily seen. If electrons 1 and 2 were completely independent
of each other then the probability of finding 1 at (r1, v1) at the same time that
2 is at (r2, v2) would simply be the product f (1) f (2). Thus, g(1, 2), being the
difference between f2 and f (1) f (2), is a measure of the extent to which electrons
1 and 2 are not independent but correlated and it is called the pair correlation
function. In a similar manner the five terms in the expansion in (12.20) represent
the contributions to f3 corresponding to all three electrons being independent of
each other, each electron in turn being independent while the remaining two are
correlated, and finally all three being correlated.

The cluster expansion was first introduced to deal with molecular interactions
for which the range of interaction rc � λmfp, the mean free path of the molecules.
Thus, throughout most of its motion a molecule is unaware of the presence of other
molecules and g(1, 2) ≈ 0 except when |r1 − r2| � rc. Likewise, h(1, 2, 3) ≈ 0
unless all three molecules are within a sphere of radius ≈ rc. In these circumstances
we expect that binary interactions will be far more significant than three particle
interactions and it can be shown that it is valid to ignore h in (12.20) thus achieving
the desired truncation of the BBGKY hierarchy.
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In a plasma the Coulomb interaction is anything but short range; indeed, the long
range nature of electron interactions is a dominant feature of plasma dynamics.
Nevertheless, the cluster expansion works for plasmas, too, but in a quite different
way. First of all, it separates out the dominant long range part of electron interac-
tions in the form of a field force. The short range interactions, the ‘collisions’, are
then defined in terms of the pair correlation function g(1, 2) and we shall see that
this is again vanishingly small over most of phase space provided that the number
of electrons in a Debye sphere is large. To see how this comes about let us substitute
(12.18) and (12.19) in (12.16) giving

∂ f (1)

∂t
+ v1 · ∂ f (1)

∂r1
+ Fext

1

m
· ∂ f (1)

∂v1

− 1

m

∂ f (1)

∂v1
·
∫

∂φ12

∂r1
f (2)dr2 dv2 = 1

m

∫
∂φ12

∂r1
· ∂g(1, 2)

∂v1
dr2 dv2

(12.21)

The first three terms in (12.21) are comparatively straightforward. The fourth term
contains the average electric field experienced by one electron due to other elec-
trons and may be written

− 1

m

∂ f (1)

∂v1
·
∫

∂φ12

∂r1
f (2)dr2 dv2 = −eE

m
· ∂ f (1)

∂v1

where the field E is given by

(−e)E(r1, t) = −
∫

∂φ12

∂r1
f (2)dr2 dv2 (12.22)

and (−e) is the electronic charge. Note, however, that E is computed assuming that
electrons are uncorrelated; the average is taken over all positions and velocities of
electron 2 with no reference to any interaction between 1 and 2. This is in fact the
electron contribution to the self-consistent field. Thus (12.21) may be written

∂ f (1)

∂t
+ v1 · ∂ f (1)

∂r1
+ F

m
· ∂ f (1)

∂v1
=
(
∂ f

∂t

)
c

(12.23)

where F now includes all external and internal ‘field’ forces and(
∂ f

∂t

)
c

= 1

m

∫
∂φ12

∂r1
· ∂g(1, 2)

∂v1
dr2 dv2 (12.24)

is called the collision term or collision integral.
The separation of electron interactions into the self-consistent field (12.22) and

the collision integral (12.24), brought about by splitting f2 into its uncorrelated and
correlated parts, is fundamental. Given that we are treating the ions as a uniform
background of positive charge, any charge imbalance in the plasma must appear as
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an inhomogeneity in f and hence lead to a non-zero self-consistent field. There is
no sense in which this term is small; indeed, we know that the tendency of a plasma
to resist charge imbalance is one of its dominant features. On the other hand, as
discussed in Section 7.1, it is very often an entirely satisfactory approximation
to neglect the collision term (12.24) completely. This, of course, corresponds to
truncation at s = 1 by expressing f2 in terms of f1, namely f2(1, 2) = f (1) f (2).

Substituting (12.19) and (12.20) in (12.17), but setting h(1, 2, 3) = 0 to truncate
the expansion, we obtain, after some cancellation on using (12.21),

∂g(1, 2)

∂t
+
(

v1 · ∂

∂r1
+ v2 · ∂

∂r2

)
g(1, 2)

+
(

Fext
1

m
· ∂

∂v1
+ Fext

2

m
· ∂

∂v2

)
g(1, 2)

− 1

m

∂φ12

∂r1
·
(
∂ f (1)

∂v1
f (2)− ∂ f (2)

∂v2
f (1)+ ∂g(1, 2)

∂v1
− ∂g(1, 2)

∂v2

)

= 1

m

∫
dr3 dv3

{
∂φ13

∂r1
· ∂

∂v1
[ f (1)g(2, 3)+ f (3)g(1, 2)]

+ ∂φ23

∂r2
· ∂

∂v2
[ f (2)g(1, 3)+ f (3)g(1, 2)]

}
(12.25)

Next, consistent with the neglect of h(1, 2, 3), we may drop the g terms com-
pared with the f f terms in the last expression on the left-hand side of (12.25).
Neglecting these terms is equivalent to the assumption that in the cluster expansion

|h| � |g| f � f f f (12.26)

and is known as the weak coupling approximation. This reduces our pair of equa-
tions to (12.23) and

∂g(1, 2)

∂t
+
(

v1 · ∂

∂r1
+ v2 · ∂

∂r2

)
g(1, 2)

+
(

Fext
1

m
· ∂

∂v1
+ Fext

2

m
· ∂

∂v2

)
g(1, 2)

− 1

m

∂φ12

∂r1
·
(
∂ f (1)

∂v1
f (2)− ∂ f (2)

∂v2
f (1)

)

= 1

m

∫
dr3 dv3

{
∂φ13

∂r1
· ∂

∂v1
[ f (1)g(2, 3)+ f (3)g(1, 2)]

+ ∂φ23

∂r2
· ∂

∂v2
[ f (2)g(1, 3)+ f (3)g(1, 2)]

}
(12.27)

Although we have achieved closure we are still a long way from obtaining the
desired kinetic equation for f alone. The pair of simultaneous equations (12.23)
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and (12.27) for f and g are far too complicated for the elimination of g. Assum-
ing Bogolyubov’s hypothesis, which states that the time scale for changes in g is
much shorter than that for f , Balescu (1960) and Lenard (1960) obtained a kinetic
equation for the special case of a homogeneous plasma in the absence of external
forces. The Balescu–Lenard equation is

∂ f

∂t
= − π

m2

∂

∂v1
·
∫

kφ2(k)dk
|ε(k, k · v1)|2 k ·∫ [

∂ f (v2)

∂v2
f (v1)− ∂ f (v1)

∂v1
f (v2)

]
δ[k · (v1 − v2)]dv2

(12.28)

where

φ(k) = e2

(2π)3/2ε0k2
(12.29)

and

ε(k, ω) = 1 + e2

ε0mk2
k ·
∫

∂ f/∂v
(ω − k · v)

dv (12.30)

are the Fourier transforms of the Coulomb potential and the plasma dielectric func-
tion, respectively. We shall not give the derivation of (12.28) for it is not the most
appropriate nor the most useful kinetic equation for most plasmas. That description
is provided by the Landau kinetic equation, which we shall derive in Section 12.4,
where we also discuss the Bogolyubov hypothesis.

A simpler version of (12.27) is obtained by setting the right-hand side equal to
zero, the advantage of which is that the equation can then be solved for g without
assuming plasma homogeneity. However, throwing away terms just because they
are inconvenient is mathematically unconvincing, to say the least. Nevertheless,
there is another special case for which (12.27) can be solved without further reduc-
tion. This is the equilibrium plasma and by solving it we shall gain insight into the
significance of the terms that we wish to discard.

12.3 Equilibrium pair correlation function

In this section we consider a plasma in equilibrium and evaluate f and g. It is
a well-known result of statistical mechanics that in thermodynamic equilibrium a
solution of the Liouville equation (12.5) is the Gibbs distribution function

fN = C exp(−H/θ) (12.31)
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where C and θ are constants and H is the Hamiltonian (12.8) expressed in terms
of vi and φi j as

H =
N∑

i=1


1

2
mv2

i +
N∑

j=1
j �=i

φi j




It is easily verified that (12.31) satisfies (12.5) and, assuming that fN like f ex
N is

normalized to unity, it follows that the constant C is given by

C = 1
/∫

exp(−H/θ)

N∏
i=1

dri dvi

Knowing fN , we may in principle calculate all the reduced equilibrium distribu-
tion functions though in practice only the calculation of f1 is simple. From (12.9)
and (12.31)

f1(1) = N
∫

exp(−H/θ)
∏N

i=2 dri dvi∫
exp(−H/θ)

∏N
i=1 dri dvi

(12.32)

The velocity integrations are separable and thus trivial. The substitutions

r′
i = ri − r1 (i = 2, 3, . . . , N ) (12.33)

remove r1 from both integrands in (12.32) with the result

f1(1) = N exp(−mv2
1/2θ)∫

dr1 dv1 exp(−mv2
1/2θ)

= n
( m

2πθ

)3/2
exp(−mv2

1/2θ) (12.34)

where n is the electron number density. The constant θ may be identified with the
definition of temperature T (see Section 12.5)

3

2
nkBT =

∫
1

2
mv2

1 f1 dv1

giving

θ = kBT

and the equilibrium distribution function (12.34) is thus the Maxwell distribution

f1(1) = fM(1) ≡ n

(
m

2πkBT

)3/2

exp(−mv2
1/2kBT ) (12.35)

Direct integration of (12.31) to obtain higher-order reduced distribution func-
tions proves to be a formidable task requiring approximation techniques (see Mont-
gomery and Tidman (1964)). However, the equilibrium pair correlation function
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may be obtained indirectly by solving the truncated equation for f2. From (12.27),
with no external forces, this is

∂g(1, 2)

∂t
+
(

v1 · ∂

∂r1
+ v2 · ∂

∂r2

)
g(1, 2)

− 1

m

∂φ12

∂r1
·
(
∂ f (1)

∂v1
f (2)− ∂ f (2)

∂v2
f (1)

)

= 1

m

∫
dr3 dv3

{
∂φ13

∂r1
· ∂

∂v1
[ f (1)g(2, 3)+ f (3)g(1, 2)]

+ ∂φ23

∂r2
· ∂

∂v2
[ f (2)g(1, 3)+ f (3)g(1, 2)]

}
(12.36)

which is to be solved for g when f = fM. Note first that, since the velocity
integrations in

f2(1, 2) = N (N − 1)
∫

exp(−H/θ)
∏N

i=3 dri dvi∫
exp(−H/θ)

∏N
i=1 dri dvi

are separable, f2 must be of the form

f2(1, 2) = fM(v1) fM(v2)[1 + p(r12)]

i.e.

g(1, 2) = fM(v1) fM(v2)p(r12) (12.37)

where r12 = |r1 − r2|. Hence, (12.36) reduces to

(v1 − v2) ·
[
∂p(r12)

∂r1
+ 1

kBT

∂φ12

∂r1

]
=

− n

kBT

∫
dr3

[
v1 · ∂φ13

∂r1
p(r23)+ v2 · ∂φ23

∂r2
p(r13)

]

This equation is valid for arbitrary v1 and v2, so choosing v2 = 0 we have

∂p(r12)

∂r1
+ 1

kBT

∂φ12

∂r1
= − n

kBT

∫
dr3 p(r23)

∂φ13

∂r1
(12.38)

The divergence of (12.38) with respect to r1, using (12.13) and

∇2(1/r) = −4πδ(r) (12.39)

then gives

∇2
1 p(r12)− e2

ε0kBT
δ(r12) = ne2

ε0kBT

∫
dr3 p(r23)δ(r13)



12.3 Equilibrium pair correlation function 475

or

(∇2
1 − λ−2

D )p(r12) = e2

ε0kBT
δ(r12) (12.40)

It is easily verified that the solution of (12.40) is

p(r12) = − e2

4πε0kBT

exp(−r12/λD)

r12

and hence from (12.37) the equilibrium pair correlation function is

g(1, 2) = − fM(v1) fM(v2)
φ12

kBT
exp(−r12/λD) (12.41)

This result allows us to examine the assumption that |g| � f f . Clearly this is
true for r12 > λD and breaks down only when electrons are sufficiently close that
the potential energy of their interaction φ12 is of the order of, or greater than, their
mean kinetic energy, i.e. for

r12

λD
� e2

4πε0kBTλD
= 1

4πnλ3
D

(12.42)

Provided that the number of electrons in a Debye sphere (4πnλ3
D/3) 
 1, this

shows that the approximation is good even within the Debye sphere except for a
tiny region at the centre given by (r12/d) < 1/4π(nλ3

D)
2/3, where d ≡ n−1/3 is

the mean distance between electrons. The chance of two (or more!) electrons being
this close to each other is clearly very small and the dimensionless parameter that
ensures this is the number of particles in the Debye sphere. The inverse of this
number is the small parameter in the weak coupling approximation as can be seen
from (12.41); generally, within the Debye sphere

|g|
f f

∼ φ

kBT
∼ 1

4πnλ3
D

Even more pleasing than the consistency of the result of our calculation with
the assumption underlying it is the precise form of (12.41) for it demonstrates
Debye shielding. This is worthy of further examination for we can see exactly
where the shielding has arisen. It is clear from (12.38) that had the integral term on
the right-hand side of this equation been set equal to zero we should have obtained
the solution p(r12) = −φ12/kBT . The effect of this term, therefore, has been to
replace the Coulomb potential by the shielded potential. With hindsight this is not
surprising. The integral term in (12.38) has arisen directly from the integral terms
in (12.36) and these are the only terms in that equation which retain any effect
of the rest of the electrons (labelled 3) on the correlation between electrons 1 and
2; these terms ‘sum up’ such effects and describe the shielding which the other
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electrons provide. In the next section we use this insight to obtain an intuitive and
relatively simple method for finding g in the general case.

12.4 The Landau equation

The general solution of (12.27) for g as a functional of f , as we have already
observed, is no simple matter. But if we use the insight obtained in the equilibrium
case and assume that the major, indeed the only important effect of the rest of
the electrons on the correlation of electrons 1 and 2 is to replace the Coulomb
potential by the shielded potential then we are left with an equation that is solvable.
Thus, we put the right-hand side of (12.27) equal to zero and replace the Coulomb
potential (12.13) by the shielded potential

φs
i j = e2

4πε0|ri − r j | exp(−|ri − r j |/λD) (12.43)

giving

∂g

∂t
+ v1 · ∂g

∂r1
+ v2 · ∂g

∂r2
= 1

m

∂φs
12

∂r1
·
[
∂ f (1)

∂v1
f (2)− ∂ f (2)

∂v2
f (1)

]
(12.44)

In solving this equation we shall use Bogolyubov’s hypothesis which is based
on the observation that time and length scales for changes in g and f are widely
separated. Since particle correlations are limited to the Debye sphere, the length
scale for g is λD and the corresponding time scale is ω−1

p , the time for an electron
with mean thermal energy to cross the Debye sphere. In contrast, f relaxes to a
Maxwellian under the influence of collisions on a time scale of τc, the collision
time, and the corresponding length scale is the electron mean free path λc, the
distance travelled by a thermal electron between collisions. Since ωpτc 
 1 and
λD � λc, the assumption of Bogolyubov’s hypothesis is justified.

Equation (12.44) may be solved by Green function techniques. Defining
G(r1, r′

1, r2, r′
2, t, t ′) as the solution of

∂G

∂t
+ v1 · ∂G

∂r1
+ v2 · ∂G

∂r2
= δ(t − t ′)δ(r1 − r′

1)δ(r2 − r′
2)

it is easily verified that G is given by

G = "(t − t ′)δ[r1 − r′
1 − v1(t − t ′)]δ[r2 − r′

2 − v2(t − t ′)]

where "(t) is the step function

"(t) =
{

1 t > 0
0 t < 0
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Fig. 12.1. Time variation of |r12 − (v1 − v2)(t − t ′)|; φs ≈ 0 unless both r12 and |r12 −
(v1 − v2)(t − t ′)| lie within a Debye sphere.

Then

g = 1

m

∫
dt ′ dr′

1 dr′
2G(r1, r′

1, r2, r′
2, t, t ′)

∂φs(r ′
12)

∂r′
1

·[
∂ f (r′

1, v1, t ′)
∂v1

f (r′
2, v2, t ′)− ∂ f (r′

2, v2, t ′)
∂v2

f (r′
1, v1, t ′)

]

= 1

m

∫ t

0
dt ′ ∂φ

s(|r12 − (v1 − v2)(t − t ′)|)
∂r12

·
[
∂ f (r1 − v1(t − t ′), v1, t ′)

∂v1
f (r2 − v2(t − t ′), v2, t ′)

− ∂ f (r2 − v2(t − t ′), v2, t ′)
∂v2

f (r1 − v1(t − t ′), v1, t ′)
]

(12.45)

Substitution of this expression for g in (12.24) (with φ replaced by φs) does not
immediately yield a tractable kinetic equation because of the arguments of f in
the collision term. Indeed, one might say that it does not yet amount to a kinetic
equation at all because g is not expressed as a functional (as opposed to a function)
of f . However, Bogolyubov’s hypothesis leads to a number of simplifications so
that g does become a functional of f making (12.23) a kinetic equation.

Note first that since the arguments of the shielded potentials in (12.24) and
(12.45) are r12 and |r12 − (v1 − v2)(t − t ′)| and φs(r) ≈ 0 for r � λD it follows
that the time interval (t − t ′) � λD/|v1 − v2| ∼ ω−1

p ; this is illustrated in Fig. 12.1.
Next, since we assume that f does not vary significantly on this time scale (ω−1

p )
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nor over distances of order λD, the arguments of f in (12.45) may be reduced to
(r1, v1, t) and (r2, v2, t) in which r1 ≈ r2. Letting τ = t − t ′ we may now rewrite
(12.45) as

g(1, 2) = 1

m

(
f (2)

∂ f (1)

∂v1
− f (1)

∂ f (2)

∂v2

)
·
∫ ∞

0

∂φs(|r12 − (v1 − v2)τ |)
∂r12

dτ

(12.46)
where we have taken the limit t → ∞ in the integral, which is allowed because,
as already observed, the integrand vanishes for τ � ω−1

p . This expression for g is
now a functional of f and substitution in (12.24) gives(

∂ f

∂t

)
c

= 1

m2

∫
dr2 dv2

∂φs(r12)

∂r12
· ∂

∂v1∫ ∞

0
dτ
∂φs(|r12 − (v1 − v2)τ |)

∂r12
·
(

f (2)
∂ f (1)

∂v1
− f (1)

∂ f (2)

∂v2

)
(12.47)

Writing φs(r) in terms of its Fourier transform

φs(r) = e2

(2π)3ε0

∫
dk exp(ik · r)

k2 + k2
D

where kD ≡ λ−1
D , (12.47) becomes(

∂ f

∂t

)
c

= − e4

(2π)6ε2
0m2

∫
dr2 dv2 dk dl

exp(ik · r12)

(k2 + k2
D)

k · ∂

∂v1∫ ∞

0
dτ

exp{i l · [r12 − (v1 − v2)τ ]}
(l2 + k2

D)
l ·
[
∂ f (1)

∂v1
f (2)− ∂ f (2)

∂v2
f (1)

]
(12.48)

To simplify this expression we integrate over r2 space first. In doing this we use
a similar approximation to that for the time integration in (12.45) and assume
f varies on a length scale much greater than λD; since the integrand in (12.48)
contains φ(r12) it vanishes exponentially for r12 
 λD so that we may replace r2

by r1 in f (2). The integration over r2 then involves exp[−i(k + l) · r2] only and
gives (2π)3δ(k+l). The integration over l space is then trivial and (12.48) becomes(

∂ f

∂t

)
c

= e4

(2π)3ε2
0m2

∫
dv2 dk

(k2 + k2
D)

2
k · ∂

∂v1∫ ∞

0
dτ exp[ik · (v1 − v2)τ ]k ·

(
∂ f (v1)

∂v1
f (v2)− ∂ f (v2)

∂v2
f (v1)

)
(12.49)
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The integration over τ is given by the Plemelj formula∫ ∞

0
dτ exp[ik · (v1 − v2)τ ] = πδ[k · (v1 − v2)] − i P

1

k · (v1 − v2)
(12.50)

where P stands for the principal part. However, the second term in (12.50) gives
no contribution to (12.49), since it makes the integrand odd in k (its contribution
must be zero since it is imaginary). Hence(

∂ f

∂t

)
c

= e4

8π2ε2
0m2

∫
dv2 dk

(k2 + k2
D)

2
k · ∂

∂v1
δ[k · (v1 − v2)]

k ·
[
∂ f (v1)

∂v1
f (v2)− ∂ f (v2)

∂v2
f (v1)

]
(12.51)

Defining g = (v1 − v2), this leaves an integration over k space of the form∫
k · Aδ(k · g)k · B

(k2 + k2
D)

2
dk (12.52)

which diverges at large k. This is a direct result of the weak coupling approximation
which clearly breaks down as r12 → 0, in fact for r12 � e2/4πε0kBT . We cut off
the integration therefore at k = 4πε0kBT/e2 and find for (12.52)

π Ai

(
δi j

g
− gi g j

g3

)
B j ln = π Ai

∂2g

∂vi ∂v j
B j ln (12.53)

where  = 4πnλ3
D and only terms in ln have been retained.

Thus, using (12.21), the kinetic equation may finally be written

∂ f

∂t
+ v · ∂ f

∂r
− e

m
E · ∂ f

∂v
=

e4 ln

8πε2
0m2

∂

∂vi

∫
dv′ ∂

2|v − v′|
∂vi ∂v j

[
∂ f (v)
∂v j

f (v′)− ∂ f (v′)
∂v′

j

f (v)

]

(12.54)

where E is the self-consistent field given by (12.22). This form of the collision
integral for a plasma was first derived by Landau using an intuitive model for
collisions, so (12.54) is known as the Landau kinetic equation.

At this point it is of interest to consider the relationship of the Landau equation
to the Balescu–Lenard equation (12.28). A comparison of (12.28) with (12.51)
shows that the dielectric function ε(k, k · v1), has simply been replaced by the
term (1 + (kD/k)2), which is the static shielding factor introduced by replacing the
Coulomb potential φ by the shielded potential φs . In fact the main effect of the
dielectric function is to produce shielding, but in the Balescu–Lenard equation it
appears as a dynamic effect involving the interaction of particles and Fourier wave



480 The classical theory of plasmas

components through the resonant integral in (12.30). Furthermore, it can be shown,
as for example in Nicolson (1983), that to the order of keeping only terms in ln
the Balescu–Lenard collision integral reduces to the Landau collision integral.

The generalization of the Landau collision integral to more than one species of
particle is given by (8.36). Since the latter equation was derived from the Fokker–
Planck equation this establishes an important link and justifies the applicability of
the Fokker–Planck model to a plasma.

12.5 Moment equations

In Section 7.2 we showed through Jeans’ theorem the formal equivalence of the
collisionless (Vlasov) kinetic theory and particle orbit theory. We turn now to the
relationship between collisional (Landau) kinetic theory and the MHD equations
discussed in Chapters 3–5. There is no simple theorem establishing this relation-
ship for there is not, even in a formal sense, an exact equivalence. The procedure
from microscopic kinetic description to macroscopic fluid description has rather
more in common with the derivation of the kinetic equation from the Liouville
equation. The reduction in detail of description, in this case the removal of depen-
dence on the velocity coordinate v, gives rise to an infinite chain of equations – the
moment equations. The derivation of the moment equations is the first of the three
basic steps that lead to the MHD equations. The second and most formidable is the
truncation and closure of the moment equations. This is where physical approxima-
tion enters and equivalence disappears; it is the subject of classical transport theory
discussed in Section 12.6. The final step is the derivation of the MHD equations
from the transport equations and the further physical approximations necessary for
this are examined in Section 12.7.

We begin with definitions of fluid variables in which we introduce the label α
(= i, e, for ions and electrons, respectively), to denote particle species. On scalars
α appears as a subscript but on vectors and tensors, for which we frequently need
to denote components by roman subscripts ( j, k, l etc.), it is more convenient to
write α as a superscript. Since fα(r, v, t)dr dv is the probability at time t of finding
particles of type α within a small volume element dr dv about the point (r, v)
the integral of this over all velocity space is the probability of finding particles,
irrespective of velocity, within a volume dr about r. Hence, the (number) density,
nα(r, t) is defined by

nα(r, t) =
∫

dv fα(r, v, t) (12.55)

Similarly, the flow velocity uα(r, t) is the mean velocity of all particles of type α
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in the volume dr about r at time t and so is given by

uα(r, t) = dr
∫

v fα(r, v, t)dv
dr
∫

fα(r, v, t)dv
= 1

nα(r, t)

∫
v fα(r, v, t)dv (12.56)

Other fluid variables like pressure, temperature and heat flux are defined in terms
of the random or thermal velocities of the particles

cα = v − uα (12.57)

Whilst the mean value of cα is clearly zero, the mean values of higher powers of
its components are non-zero in general and, for example, are related to the thermal
momentum flux and thermal energy flux and thereby to the pressure and heat flux.
Thus, we define the elements of the pressure tensor pαi j (r, t) by

pαi j (r, t) = mα

∫
cαi cαj fα(r, v, t)dv (12.58)

and the heat flux tensor qα
i jk(r, t) by

qαi jk(r, t) = mα

∫
cαi cαj cαk fα(r, v, t)dv (12.59)

It is convenient to separate pαi j into two tensors by

pαi j = pαδi j +�α
i j (12.60)

where

�α
i j = mα

∫ (
cαi cαj − 1

3
|cα|2δi j

)
fα dv (12.61)

is by definition a traceless tensor and

pα = mα

3

∫
|cα|2 fα dv (12.62)

is, for an isotropic plasma, the scalar pressure.
It is also useful to define a kinetic temperature Tα(r, t) by extrapolating the well-

known result that for an ideal gas in equilibrium the thermal energy associated
with each degree of freedom of the gas is 1

2 kBTα. Since Boltzmann’s constant kB

is always associated with Tα we shall, in this chapter, absorb it into the definition
of Tα (which is thereby measured in energy units instead of degrees). Thus, with
three degrees of freedom for each of the nα particles we have

3nαTα(r, t)

2
= mα

2

∫
|cα|2 fα(r, v, t)dv = 3

2
pα (12.63)
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Finally, the heat flux vector qα(r, t) is the flux of thermal energy relative to the
flow velocity and so is given by

qα(r, t) = mα

2

∫
|cα|2cα fα(r, v, t)dv (12.64)

It then follows from (12.59) that

qαi (r, t) = 1

2
qα

i j j (r, t) (12.65)

These velocity integrals by which the fluid variables are defined are called ‘mo-
ment integrals’ of fα. The order of a moment integral is given by the highest power
of the components of v occurring in the integrand. Thus, the density is a zero-order
moment, the flow velocity is a first-order moment, the pressure and temperature
are second-order moments and the heat flux is a third-order moment.

We now generate evolution equations for these macroscopic variables by taking
appropriate moments of the kinetic equation

∂ fα
∂t

+ v · ∂ fα
∂r

+ eα
mα

(E + v × B) · ∂ fα
∂v

=
(
∂ fα
∂t

)
c

(12.66)

Since r, v and t are independent variables it is clear from (12.55) that when we
integrate (12.66) over velocity space (i.e. take the zero-order moment) the first
term in the new equation is ∂nα/∂t so that this may be regarded as an equation for
the time evolution of nα(r, t). It is also evident from (12.56) that the second term
gives rise to ∇ · (nαuα), that is, the evolution equation for the zero-order moment
nα contains a term involving the first-order moment uα. We obtain an evolution
equation for uα by taking the first-order moment of (12.66), that is we multiply by
v and then integrate over velocity space. Now the leading term is ∂(nαuα)/∂t but
the second term again gives rise to a higher moment,

∫
vv fα dv, which by (12.58)

is somehow related to the pressure tensor as well as to nα and uα. Clearly, this
drawing down of higher moments persists no matter how many moments of the ki-
netic equation we take. We have removed a variable (v) of infinite dimension but, in
doing so, have generated an infinite chain of moment equations. Such mathematical
transformations do not reduce the basic complexity of the description. To achieve
this we need approximations based on physical assumptions. Up to this point we
have merely outlined a scheme for replacing one equation in seven-dimensional
space (r, v, t) by an infinite set of equations in four-dimensional space (r, t) and
there is, thus far, an exact equivalence between these descriptions. For the present,
we shall not worry about how the real simplification is to be achieved but will go
ahead and generate the first few equations in the chain.
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It is useful to obtain a general moment equation by multiplying (12.66) by ψ(v),
where ψ(v) is any polynomial function of the components of v, and integrating
over velocity space. Defining

〈ψ〉 =
∫
ψ(v) fα dv∫

fα dv
= 1

nα(r, t)

∫
ψ(v) fα(r, v, t) dv (12.67)

we get

∂

∂t
(nα〈ψ〉)+ ∂

∂r
· (nα〈vψ〉)

− nαeαE
mα

·
〈
∂ψ

∂v

〉
− nαeα

mα

〈
(v × B) · ∂ψ

∂v

〉
=
∫
ψ

(
∂ fα
∂t

)
c

dv

(12.68)

where we have used integration by parts to obtain the third and fourth terms
assuming that fα → 0 faster than any inverse power of |v| as |v| → ∞, i.e.
lim

|v|→∞
(ψ fα) = 0.

The following useful relationships are easily verified using (12.57)–(12.65) and
(12.67):

〈viv j 〉 = 〈(cαi + uαi )(c
α
j + uαj )〉

= 〈cαi cαj 〉 + uαi uαj

= Tα
mα

δi j + �α
i j

mαnα
+ uαi uαj (12.69)

〈viv jv j 〉 = 〈(cαi + uαi )(c
α
j + uαj )

2〉
= 〈cαi cαj cαj 〉 + 2〈cαi cαj 〉uαj + uαi 〈cαj cαj 〉 + uαi uαj uαj

= 2qα
i

mαnα
+ 5Tα

mα

uαi + 2�α
i j

mαnα
uαj + uαi |uαj |2 (12.70)

The collisional conservation relations are of fundamental importance in the
derivation of the fluid equations. We have∫

dv
(
∂ fα
∂t

)
c

= 0 (α = i, e) (12.71)

∑
α

mα

∫
dv v

(
∂ fα
∂t

)
c

= 0 (12.72)

∑
α

mα

2

∫
dv v2

(
∂ fα
∂t

)
c

= 0 (12.73)

Thus, when ψ(v) = 1 the collision term makes no contribution to the moment
equation (12.68) for either ions or electrons. Also, when ψ(v) = mαv or 1

2 mαv
2

the ion and electron collision terms are equal in magnitude but opposite in sign.
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In turn we now set ψ(v) = 1,mαvi ,
1
2 mαv

2 in (12.68) to get

∂nα
∂t

+ ∂

∂r
· (nαuα) = 0 (12.74)

∂

∂t
(mαnαuαi )+

∂

∂r j
(mαnαuαi uαj + nαTαδi j +�α

i j )− eαnα(Ei + (uα × B)i ) = Rα
i

(12.75)

nα
∂Tα
∂t

+ nαuα · ∇Tα + 2

3
nαTα∇ · uα + 2

3
�α

i j

∂uαi
∂r j

+ 2

3
∇ · qα = 2

3
Qα

(12.76)

where

Rα = mα

∫
dv v

(
∂ fα
∂t

)
c

(12.77)

is the rate of transfer of momentum to species α from the other species and

Qα = mα

2

∫
dv |v − uα|2

(
∂ fα
∂t

)
c

= mα

2

∫
dv v2

(
∂ fα
∂t

)
c

− uα · Rα (12.78)

is the rate of transfer of thermal energy. In deriving (12.78), (12.71) and (12.77)
have been used. It is easily seen that consequences of the conservation relations
(12.72) and (12.73) are

Re = −Ri (12.79)

and

Qe = −Qi − (ue − ui) · Re (12.80)

The momentum equation (12.75) can be simplified using the continuity equa-
tion (12.74) but, with subsequent manipulations in mind, we choose not to do
this. However, the energy equation (12.76) has been reduced using both (12.74)
and (12.75). Because of the special role of collisions in classical (and neoclassical)
transport theory the three moment equations (12.74)–(12.76) are particularly im-
portant and although, for an adequate account of transport theory, it is necessary to
generate further moments these will not be displayed.
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12.5.1 One-fluid variables

The fluid variables we have defined and the moment equations that have been
derived for their evolution amount to a two-fluid description of the plasma. But
the MHD equations, our ultimate goal, are cast in terms of a single fluid. The
final exercise in this section, therefore, is to introduce one-fluid hydrodynamical
and electrodynamical variables and make a (partial) transformation of the moment
equations. At this stage a complete transformation to a one-fluid description would
be inappropriate. The reason for this is that the exchange of thermal energy between
ions and electrons is a rather inefficient process and can be as slow as the hydrody-
namical changes taking place in the plasma. In transport theory the separation of
fast (collisional) and slow (hydrodynamic) time scales is the key to the truncation
procedure. It is essential, therefore, to retain separate evolution equations for ion
and electron temperatures. The one-fluid variables are the plasma mass density

ρ(r, t) =
∑
α

mαnα(r, t) (12.81)

the charge density

q(r, t) =
∑
α

eαnα(r, t) (12.82)

the centre of mass (or plasma flow) velocity u(r, t) defined by

ρ(r, t)u(r, t) =
∑
α

mαnα(r, t)uα(r, t) (12.83)

and the current density

j(r, t) =
∑
α

eαnα(r, t)uα(r, t) (12.84)

With the aid of this set of equations and its inverse

ne = Zeρ − m iq

e(m i + Zme)
≈ Zρ

m i
− q

e
≈ Zρ

m i

ni = eρ − meq

e(m i + Zme)
≈ ρ

m i
= ρ

m i

ue = Zeρu − m ij
Zeρ − m iq

= Zeρu − m ij
Zeρ − m iq

≈ u − m i

Zeρ
j

ui = eρu + mej
eρ + meq

≈ u = u




(12.85)

we can transform the two-fluid moment equations (12.74) and (12.75) to their
equivalent one-fluid moment equations for ρ, q, u and j. The small electron to
ion mass ratio allows us to simplify the new equations for u and j by taking the
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me/m i → 0 limit. The first set of approximations (third column) in (12.85) corre-
sponds to this limit. The second set of approximations (final column) is obtained
in the limit |q| � Zeρ/m i and allows a further simplification of these equations.
This approximation is a consequence of the assumption of quasi-neutrality since
what we mean by this is that the charge imbalance should be a very small fraction
of the electronic or ionic charge, that is

|q| � ene ≈ Zeni ≈ Zeρ/m i (12.86)

Multiplying the ion and electron versions of (12.74) by their respective masses
and adding gives, on using (12.81) and (12.83),

∂ρ

∂t
+ ∇ · (ρu) = 0 (12.87)

which is the one-fluid continuity equation. Multiplying by the respective charges
and adding gives, on using (12.82) and (12.84), the equation of charge conservation

∂q

∂t
+ ∇ · j = 0 (12.88)

Both (12.87) and(12.88) are, of course, exact.
Next we add the ion and electron versions of (12.75) to obtain

∂(ρui )

∂t
+ ∂

∂r j
(ρui u j + Pδi j +�i

i j +�e
i j )

− q Ei − (j × B)i = 0 (12.89)

where the total scalar pressure

P ≈ ZρTe

m i
+ ρTi

m i
≈ neTe + niTi (12.90)

and terms of order (Zme/m i) and (m iq/Zeρ) have been neglected. Likewise, mul-
tiplying (12.75) by eα/mα and adding we obtain in the same approximation

∂ ji
∂t

+ ∂

∂rk

(
jkui + ji uk − m i

Zeρ
ji jk

)

− Ze

m ime

∂(ρTe)

∂ri
+ ∂

∂rk

(
Ze

m i
�i

ki − e

me
�e

ki

)

− Ze2ρ

m ime
Ei − Ze2ρ

m ime

[(
u − m i

Zeρ
j
)

× B
]

i

= − e

me
Re

i

(12.91)

This equation is the generalized Ohm’s law since it relates the current to the elec-
tromagnetic fields and, under conditions yet to be discussed, reduces to the simple
Ohm’s law (3.35).
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On using the transformation equations (12.85) (final column), (12.76) gives for
the evolution of ion and electron temperatures

ρ

m i

∂Ti

∂t
+ ρ

m i
u · ∇Ti + 2ρTi

3m i
∇ · u + 2

3
�i

i j

∂ui

∂r j
+ 2

3
∇ · qi = 2

3
Qi (12.92)

and

Zρ

m i

∂Te

∂t
+ Zρ

m i

(
u − m i

Zeρ
j
)

· ∇Te + 2ZρTe

3m i
∇ ·

(
u − m i

Zeρ
j
)

+ 2

3
�e

i j

∂

∂r j

(
ui − m i

Zeρ
ji

)
+ 2

3
∇ · qe = 2

3
Qe (12.93)

Let us summarize what has been done in this section. The ion and electron
kinetic equations have been replaced by an infinite series of moment equations.
The leading equations in this series have been obtained explicitly and describe
the evolution of the hydrodynamical (ρ, u, Ti, Te) and electrodynamical (q, j) vari-
ables. However, this is not a closed set of equations for it contains the undetermined
quantities: ���i,���e, qi, qe,Re, Qi and Qe. The system cannot be closed simply by
generating higher moment equations because the evolution equation for a moment
of order n automatically introduces a moment of order n+1, the evolution of which
demands yet another equation in the infinite chain. Closure can be achieved only
by truncating on the basis of some appropriate physical approximation. This is the
subject of classical transport theory to which we now turn.

12.6 Classical transport theory

Plasma transport theory has much in common with the classical transport theory
of neutral gases and yet it is sufficiently different that it has remained an active
area of plasma research. The fullest and most rigorous account has been given by
Balescu (1988) who deals in turn with the regimes of classical and neoclassical
transport. Classical theory applies to plasmas in which the transport of matter,
momentum and energy is governed by the interaction of the particles through
binary collisions in the presence of slowly varying electric and magnetic fields;
the external magnetic field is assumed to be straight, homogeneous and stationary.

Neoclassical theory applies to plasmas in curved, inhomogeneous fields. Phys-
ically, this is the only difference from classical theory but it turns out that the
global geometry of the field, as opposed to its local value, plays a dominant role
in the transport so that a fluid description remains valid even in the limit of very
weak collisions (long mean free path). Nevertheless, even in this limit, neoclassical
theory (a brief introduction to which was given in Section 8.3) remains a collisional
transport theory because collisions, though rare, play an essential role and no ac-
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count is taken of ‘collective’ interactions. When turbulent processes arising from
wave instabilities dominate we enter the regime of anomalous transport.

It is impossible to give here more than a brief introduction to classical transport
theory, the regime that is appropriate for the derivation of the MHD equations.
Our account is not much more than a précis of Balescu’s treatment. Truncation
and closure of the infinite chain of moment equations is based on an analysis of
the time scales that characterize the plasma dynamics. In the MHD approximation
it is assumed that the hydrodynamic time scale τH characterizes the electric and
magnetic fields E and B, as well as the hydrodynamic variables ρ, u, and Tα; in
other words, field fluctuations in time and space arise from the plasma motion. One
immediate consequence of this, noted in Chapter 3, is that the electric field is of
order (u/c) compared with the magnetic field so that the displacement current may
be neglected and the Maxwell equations become

∇ × E = −∂B
∂t

(12.94)

∇ × B = µ0j (12.95)

∇ · E = q

ε0
(12.96)

∇ · B = 0 (12.97)

A second consequence is that the qE term in (12.89) may be neglected compared
with the j × B term since a dimensional analysis of (12.95) and (12.96) gives

|qE|
|j × B| ∼ ε0µ0 E2

B2
∼
(u

c

)2
(12.98)

This has the effect of removing the charge density entirely from the hydrodynam-
ical moment equations and makes (12.88) redundant. From (12.95) we see, in
fact, that this equation now reads ∇ · j ≈ 0, ∂q/∂t ≈ 0, these approximations
being valid to order (u/c)2. Thus, in the MHD approximation q is determined by
(12.96) and j by (12.95). There are then two equations relating E and B, namely
(12.94) and the generalized Ohm’s law (12.91), and the hydrodynamic moment
equations (12.87), (12.89) (with q = 0), (12.92) and (12.93), for ρ, u, Ti and Te,
respectively.

12.6.1 Closure of the moment equations

The physical approximation that enables us to achieve closure in classical transport
theory is that τH is much longer than the collisional relaxation times τe and τi:

τα � τH (α = i, e) (12.99)
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It then follows that ions and electrons will, on the short time scales τα, approach
local Maxwellian distributions

fα0(r, v, t) = nα(r, t)

(
mα

2πTα(r, t)

)3/2

exp

{
−mα[v − uα(r, t)]2

2Tα(r, t)

}
(12.100)

These functions, when substituted in the kinetic equations, give zero contributions
from the collision terms but are not solutions of the kinetic equations because
nα, uα and Tα are not constants but vary with r and t .

It should be noted that the two-fluid variables, nα, uα, Tα, which characterize the
local Maxwellians in (12.100) vary on the slow time scale despite the presence of
collision terms in the evolution equations of uα and Tα. That the equalization of ion
and electron temperatures takes place on the slow time scale is not surprising since
we have already observed that unlike particle collisions are inefficient exchangers
of energy because of the disparity in the masses. The argument in the case of the
flow velocities is best explained from (12.85). The ion flow velocity is approxi-
mately the plasma flow velocity and therefore slowly varying. Furthermore, the
difference between ion and electron flow velocities is represented by the current j
which, in the MHD approximation, is defined by (12.95) in terms of the magnetic
field and, therefore, it also changes on the hydrodynamic time scale. Finally, as
discussed in the next section, short time scale variation arising from collision terms
is merely transient.

The distribution function is now written as

fα(r, v, t) = fα0[1 + χα(c̃; r, t)] (12.101)

where χα measures the deviation of fα from fα0 and for convenience we have
introduced the dimensionless velocity†

c̃ =
(

mα

Tα(r, t)

)1/2

[v − uα(r, t)] (12.102)

Standard procedure in transport theory is then to expand χα in a series of orthogonal
polynomials in c̃ with coefficients that are functions of r and t related to moments
of fα. There are two desirable features of any chosen procedure. One is to find an
expansion which is rapidly convergent so that a truncated set of equations (for the
truncated set of moments) determines transport properties to the desired degree of
approximation. The second requirement is to choose a method of expansion that
is physically transparent. The singular achievement of Balescu’s approach is the
combination of both these features.

The tensorial Hermite polynomials are a natural choice for the expansion of
χα since they are orthogonal with respect to the weight function fα0. This choice

† Clearly, c̃ should have the label α but this is suppressed to avoid cluttering the notation.
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was used by Grad (1949) who developed the moment method of solution of the
kinetic equations. The method suffers a serious disadvantage, however, due to the
lack of a one-to-one correspondence between successive terms in the expansion
and the physical moments. The reason for this is that the expansion is in terms
of reducible Hermitian tensors so that there are, for example, contributions to the
vector moment from the contracted (reduced) third-order tensor. This also causes
slow convergence in this method. Balescu overcomes this disadvantage by first
writing χα in a representation which exhibits explicitly the possible anisotropies of
the distribution function, that is

χα(c̃; r, t) = Aα(c̃; r, t)+ c̃k Bα
k (c̃; r, t)+

(
c̃k c̃l − 1

3
c̃2δkl

)
Cα

kl(c̃; r, t)+ · · ·
(12.103)

where Aα is a scalar function, Bα
k is a vector function and Cα

kl is a symmetric
traceless second-order tensor. Further terms (which we shall not need) involve
successively higher-order, irreducible tensors and tensor functions. Balescu then
expands the functions Aα, Bα

k ,Cα
kl in series of irreducible tensorial Hermite poly-

nomials which maintain the Cartesian representations of the vector c̃. This has
an advantage over the Chapman–Enskog method which takes (12.103) as a basic
ansatz but writes c̃ in spherical polar coordinates and expands χα in an infinite
series of Laguerre–Sonine polynomials and spherical harmonics.

The chief advantage of the representation of χα in (12.103), however, lies in
the relationship between the terms in the mathematical series and the physical
quantities. In a transport theory that is linear in χα it is clear that the heat flux qα,
for example, being a vector moment of fα is completely determined by the vector
part of χα, i.e. by Bα

k . Likewise,�α
kl is completely determined by Cα

kl . Furthermore,
choosing the exact values of nα(r, t), uα(r, t) and Tα(r, t), as defined by (12.55),
(12.56) and (12.63), to define the local equilibrium distribution (12.100) puts the
following constraints on χα: ∫

dc̃ fα0χα = 0∫
dc̃ fα0c̃χα = 0∫

dc̃ fα0c̃2χα = 0


 (12.104)

It follows that in linear theory only the vector and traceless second-order tensor
terms in (12.103) are required. Balescu shows, moreover, that the deeper physical
significance of this lies in the fact that only these terms contribute to entropy
production in the linear regime. Thus, (12.103) is replaced by

χα(c̃; r, t) = c̃k Bα
k (c̃; r, t)+

(
c̃k c̃l − 1

3
c̃2δkl

)
Cα

kl(c̃; r, t) (12.105)

The expansions for Bα
k and Cα

kl may be truncated at various levels with each suc-
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cessive level adding three vector plus five (independent) tensor components so that
allowing for the five moments corresponding to nα, uα and Tα the choices are for
5, 13, 21, 29, . . . moment approximations. Balescu shows that whereas there is a
considerable difference between the 13 moment (13M) approximation and the 21M
approximation no significant improvement is provided by the 29M approximation.
There is not the space here to present the mathematical analysis of even the 13M
approximation. Rather we shall describe the procedure and present the main results.

12.6.2 Derivation of the transport equations

Balescu’s procedure leads to a natural classification of the moments which arises
mathematically but is rooted in the physics. In the two-fluid description of the
plasma the first class contains the variables nα, uα and Tα which Balescu calls
the plasmadynamical moments. The physical significance of these moments is that
they determine the local equilibrium distribution. All the other moments in the
two-fluid description (the complementary set) are called the non-plasmadynamical
moments and have the complementary property that they are identically zero in
the local equilibrium state; this follows from the orthogonality properties of the
Hermite polynomials. However, we shall not be directly concerned with the non-
plasmadynamical moments because our goal is the one-fluid MHD description for
which we make the transformations(

ne

ni

)
→

(
ρ = mene + m ini

q = −ene + Zeni

)
(12.106)

(
ue

ui

)
→

(
ρu = meneue + m iniui

j = −eneue + Zeniui

)
(12.107)

In this description the classification is based on properties of the evolution
equations by means of which moments are first separated into those which are
hydrodynamical and all others which are non-hydrodynamical. The class of hy-
drodynamical moments includes ρ, u, Te, Ti whose evolution equations contain no
collision term or, in the case of the temperatures, one which is negligibly small.
The charge density q shares this property and could be added to this class but, as
we have seen already, it has no role in the MHD approximation and may be left
out of the discussion. The other electrodynamical moment j belongs to the non-
hydrodynamical class because its evolution equation (12.91) contains a significant
collision term. This is also true of the electron and ion fluxes defined by

���α = nαuα (α = e, i) (12.108)

which are sometimes (e.g. in neoclassical theory) used instead of j. These mo-
ments share this property with the pressure tensors and heat fluxes. Another shared
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property of these moments is that the evolution equations for ���α, j,�α
rs and qα

all contain a source term which is a function of the hydrodynamical moments.
Since these are the only non-hydrodynamical moments which have this property
and, furthermore, these are the only non-hydrodynamical moments appearing in
the evolution equations for hydrodynamical moments, it is clear that they play a
special role and the class of non-hydrodynamical moments is, therefore, further
subdivided into these privileged non-hydrodynamical moments and all others which
are non-privileged.

The physical significance of this subdivision, as Balescu explains, is the one-
to-one correspondence between the solutions of the evolution equations for the
privileged moments and the transport equations of non-equilibrium thermodynam-
ics. The latter relate thermodynamic fluxes, Jn , and forces, Xn , by a set of transport
equations

Jn =
∑

m

Lnm Xm

in which the elements of the transport matrix, Lnm , are the transport coeffi-
cients, having the Onsager symmetry Lnm = Lmn . Thus, the privileged non-
hydrodynamical moments may be identified with the thermodynamic fluxes and the
source terms (involving the hydrodynamical moments) with the thermodynamic
forces. On the other hand, the solutions for the non-privileged moments have a
quite different structure and their main role is to improve the accuracy of the
transport coefficients as one goes to higher moment approximations.

This classification of the moments is highly significant also for the next stage
of classical transport theory. Although closure of the set of moment equations
is achieved by adopting, say, the 21M approximation, there remains the task of
solving a sub-set of these equations so that most of the moments may be elim-
inated leaving a much smaller set of equations for the physically most interest-
ing variables. Specifically, the goal is to find expressions for the privileged non-
hydrodynamical moments in terms of the hydrodynamical moments which can
then be substituted in the evolution equations of the latter thereby yielding the
set of MHD equations.

A subsidiary but necessary task is to express the collision terms as functions
of the moments. This is accomplished by first substituting (12.105) in (12.101)
and then (12.101) in (12.77), (12.78) and the other collision terms arising in other
moment equations; the Landau collision integral (12.54) is used for (∂ fα/∂t)c. The
collision terms that we shall need explicitly are given by

Re = me

τe

(
j
e

+ 3qe

5Te
+ · · ·

)
= −Ri (12.109)
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and

Qi = 3Zmeni

m iτe
(Te − Ti)

= −Qe − (ue − ui) · Re

= −Qe + 1

ene
j · Re (12.110)

where we have used (12.85). In the expression for Re successive terms arise from
progressively higher moment aproximations; the j term is there in the 5M approx-
imation, the q term in the 13M approximation, etc. In principle, we are discussing
the 21M approximation and so the next term in the bracket is included in Balescu’s
calculations. This can only be expressed in terms of a collision coefficient and
the next Hermite coefficient in the expansion of Be

k which we have not defined. It
turns out, however, that we shall not need it explicitly for reasons that will become
apparent and so we do not write it out in (12.109). The point to notice about Qi is
the presence of the factor me/m i confirming that transfer of thermal energy from
electrons to ions is a very slow process.

For what comes next, it should be noted that the collision terms in general are
all proportional to χα, since fα0 is Maxwellian and χα = 0 in (12.101) would
make all collision terms vanish. In linear transport theory, solution of the moment
equations is carried out to first order in the small parameter ε = τα/τH. If all
moments are written in dimensionless variables then all terms have dimensions of
an inverse time which is either τH or τα. A self-consistent linear transport theory is
then obtained by assuming that χα is at most of first order in the small parameter
ε = τα/τH. The hydrodynamical moments are taken to be of order zero with non-
hydrodynamical moments and collision terms at most of order one. No assumption
is made about Larmor frequencies which enter through the Lorentz force, so �ατα

is treated as zero order.
Now if we examine the evolution equations (12.87), (12.89), (12.92) and (12.93)

for the hydrodynamical moments, we find that these contain either no collision
terms or, in the case of Te and Ti, collision terms which are either of order me/m i

or ε2 and therefore negligible. The hydrodynamical moments consequently change
only on the slow time scale, as anticipated earlier.

The equations for the privileged non-hydrodynamical moments, on the other
hand, contain both slow and fast time scale terms with the leading order terms
showing that fast time scale collision terms are balanced by slow time scale terms
consisting of gradients of hydrodynamical moments and electromagnetic field
terms. In (12.91), the only example of such an equation that we have explicitly
presented, the leading terms are the third, fifth, sixth and seventh so that the lin-
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earized, generalized Ohm’s law is

Zeρ

m i
(E + u × B)+ Z

m i
∇(ρTe)− j × B = Re (12.111)

It could be argued that the ∂j/∂t term should also be retained since, through the
collision term, j can vary on the fast time scale. This is quite true but Balescu shows
that fast time scale changes cause only transient behaviour which disappears after a
few collision times so that asymptotic results can be obtained by simply dropping
the time derivatives and solving the resulting algebraic equations. This transient
behaviour is not without physical interest for it is in the transition from transient
to asymptotic state that the system becomes Markovian. For a few collision times
the plasma maintains a dependence on its (unknown) initial state and its dynamical
behaviour is a function of the whole history of its motion up to that point. But for
t 
 τα collisions have wiped out all knowledge of the initial state and any depen-
dence on past history extends no further back than about 7τα which is negligible
in a consistent linear theory. There is a striking analogy here with the derivation of
the kinetic equation from the BBGKY hierarchy, with non-hydrodynamic moments
playing the role of the correlation function and hydrodynamic moments the role of
the one-particle distribution function; of course the collision time τα has changed
its role from being the slow time scale (compared with τc the duration of a collision)
to being the fast time scale compared with τH.

Balescu’s transport equations expressing the privileged non-hydrodynamical
vector moments in terms of hydrodynamical moments and the electric and mag-
netic fields are

jk = σkl Êl − αkl∂Te/∂rl (12.112)

qe
k = αkl Te Êl − κe

kl∂Te/∂rl (12.113)

q i
k = −κ i

kl∂Ti/∂rl (12.114)

(12.115)

where the effective electric field

Ê = E + u × B + 1

ene
∇(neTe) (12.116)

includes a thermoelectric component. The transport coefficients are second-order
tensor quantities representing electrical conductivity, σkl , the thermoelectric co-
efficients, αkl , and thermal conductivity, καkl . They have just three independent
components and relative to Cartesian axes with B = Bẑ, take the form

L =

 L⊥ L∧ 0

−L∧ L⊥ 0
0 0 L‖


 (12.117)
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where L‖, L⊥ are the coefficients parallel and perpendicular to B and L∧ is the
only non-zero, off-diagonal element. This representation expresses the invariance
of these transport coefficients under rotations of the axes in the plane perpendicular
to B. The traceless pressure tensors, �α

kl , are already of second-order and so they
introduce a fourth-order viscosity tensor, µklmn , through the relationship

�α
kl = −µα

klmnνmn (12.118)

where

νmn =
(
∂un

∂rm
+ ∂um

∂rn
− 2

3
δmn∇ · u

)
(12.119)

However, the same symmetries that reduce the second-order tensors to just three
independent elements mean that µα

klmn has only five independent elements which
we label µα

‖ , µ
α
1 , µ

α
2 , µ

α
3 , µ

α
4 . Balescu shows that (12.118) may then be written

�α
xx = − 1

2(µ
α
‖ + µα

4 )νxx − 1
2(µ

α
‖ − µα

4 )νyy + µα
3νxy

�α
yy = − 1

2(µ
α
‖ − µα

4 )νxx − 1
2(µ

α
‖ + µα

4 )νyy − µα
3νxy

�α
xy = − 1

2µ
α
3νxx + 1

2µ
α
3νyy − µα

4νxy = �α
yx

�α
xz = −µα

2νxz + µα
1νyz = �α

zx

�α
yz = −µα

1νxz − µα
2νyz = �α

zy

�α
zz = −µα

‖νzz




(12.120)

A further reduction arises from the relationships

µα
4 (�ατα) = µα

2 (2�ατα), µα
3 (�ατα) = µα

1 (2�ατα)

discovered by Braginsky (1965) so that effectively we can again consider just three
coefficients.

12.6.3 Classical transport coefficients

A number of well-known effects arise from the non-diagonal elements of the
transport coefficients. For example, a non-zero Ex gives rise to a component of
current in the y direction, jy = σyx Ex ; this is the Hall current. Similarly, a
temperature gradient in the x direction produces a heat flux in the y direction,
qα

y = −καyx∂Tα/∂x , known as the Righi–Leduc effect. The Nernst effect is the
heat flux qe

y = αyx Te Ex produced by an electric field in the x direction, and
the Ettinghausen effect, produced by the same coefficient, is the electric current,
jy = −αyx∂Te/∂x , due to an electron temperature gradient in the x direction.

The transport coefficients are, of course, dependent on the plasma parameters as
well as the magnetic field. They can be written in terms of dimensionless functions
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of the atomic number Z and Xα = �ατα as follows:

σkl =
(

e2ne

me

)
τeσ̃kl(Z , Xe)

αkl =
(

5

2

)1/2 (ene

me

)
τeα̃kl(Z , Xe)

καkl =
(

5nαTα
2mα

)
τακ̃

α
kl(Z , Xα)

µα
p = nαTαταµ̃α

p(Z , Xα) (p =‖, 1, 2, 3, 4)




(12.121)

with

τe = 6
√

2π3/2ε2
0m1/2

e T 3/2
e

Z2e4ni ln

τi = 6
√

2π3/2ε2
0m1/2

i T 3/2
i

Z4e4ni ln




(12.122)

In (12.121) the dimensionless transport coefficients (denoted by the tilde) are tab-
ulated functions of Z and Xα the precise details of which depend upon the number
of moments taken in the approximation.

In the limit of zero magnetic field, Xα → 0, we find

L⊥ = L‖, L∧ = 0 (12.123)

where L stands for σ, α or κα, and

µα
2 = µα

4 = µα
‖ , µα

1 = µα
3 = 0 (12.124)

Thus, (12.112)–(12.118) reduce to

j = σ‖Ê − α‖∇Te (12.125)

qe = α‖TeÊ − κe
‖∇Te (12.126)

qi = −κ i
‖∇Ti (12.127)

�α
kl = −µα

‖νkl (12.128)

We see that all the transport coefficients have become scalars whose values are
given by the parallel coefficients in this limit. The ion heat flux is simply given by
Fourier’s law (12.127). The asymmetry between this equation and (12.126) for the
electron heat flux, as between (12.113) and (12.114), arises from the mass ratio.
Only ion–ion collisions are effective for ion transport, ion–electron collision terms
being of order me/m i in comparison, so there is a decoupling of the ions.

The electron fluxes, on the other hand, are subject to both electric and hydrody-
namic forces. If the latter are absent (∇Te = 0) we retrieve the simple Ohm’s law

j = σ‖E (12.129)
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and also find a heat flux driven by the electric field

qe = α‖TeE (12.130)

which is related to the Peltier effect in thermocouples.
Fourier’s law for electrons

qe = −κe
‖∇Te (12.131)

is recovered when Ê = 0, i.e. when the electric force on the electrons balances
the electron pressure gradient, eneE = −∇pe. In this case there is still an electric
current produced by the electron temperature gradient

j = −α‖∇Te

This is the thermoelectric effect.
It is obvious from (12.121) that for B = 0, Xα = 0 and so all of the transport

coefficients are proportional to a collision time,

L‖ ∝ τα (12.132)

The implication of this is that collisions impede transport parallel to the magnetic
field, as one would expect since it is only collisions that interrupt the flow of mat-
ter, momentum and energy in response to the thermodynamic forces. In this case
the dependence on density and temperature can be simply expressed because the
dimensionless functions L̃‖ are functions of Z only. From (12.121) and(12.122),
using Ze = −1, Z i = Z , and writing

A = 6
√

2π3/2ε2
0

ln
(12.133)

we find

σ‖ = AT 3/2
e

e2m1/2
e

σ̃‖(Z)
Z

(12.134)

α‖ =
√

5

2

AT 3/2
e

e3m1/2
e

α̃‖(Z)
Z

(12.135)

κα‖ = 5AT 5/2
α

2e4m1/2
α

κ̃α‖ (Z)

|Z Z3
α|

(12.136)

µα
‖ = Am1/2

α T 5/2
α

e4

µ̃α
‖ (Z)

|Z Z3
α|

(12.137)

Ignoring the weak density and temperature dependence contained in A through
ln we see that all coefficients increase with temperature, with the thermal con-
ductivities and viscosities showing a particularly strong dependence, and all coeffi-
cients are independent of density. This latter feature is typical of the weak coupling
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approximation applied to the Landau kinetic equation and is true for the transport
coefficients of a dilute neutral gas as well.

The electrical conductivity and thermoelectric coefficient are, of course, deter-
mined by the electrons because of their much smaller mass and this has already
been taken into account by ignoring terms of order me/m i. But now from (12.136)
and (12.137) we can compare electron and ion thermal conductivities and viscosi-
ties. We see that

κ i
‖
κe

‖
=
(

me

m i

)1/2( Ti

Te

)5/2 1

Z3

κ̃ i
‖(Z)

κ̃e
‖(Z)

(12.138)

and
µi

‖
µe

‖
=
(

m i

me

)1/2( Ti

Te

)5/2 1

Z3

µ̃i
‖(Z)

µ̃e
‖(Z)

(12.139)

in which the mass ratio dependence indicates the predominance of electron thermal
conductivity and ion viscosity. Thus, parallel to the magnetic field, energy is mainly
transported by the electrons and momentum by the ions though it should be noted
that for high Z or Te 
 Ti electron viscosity could become significant.

All of this discussion of the parallel transport coefficients holds good when
B �= 0. This is because the equations for the parallel moments decouple from
those for the perpendicular moments and are independent of the magnetic field.
In other words, if we were to plot the variation with Xα = �ατα of the dimen-
sionless transport coefficients, the parallel coefficients L̃‖(Z), being functions of
Z only, would be horizontal straight lines, as in Fig. 12.2. This is not the case
for the perpendicular coefficients, of course. From (12.123) and (12.124) we see
that some of these, σ̃⊥, α̃⊥, κ̃α⊥, µ̃

α
2 and µ̃α

4 , start at Xα = 0 with values equal to
the corresponding parallel coefficient while the others are all zero at Xα = 0.
Representing all the initially non-zero set by the label L̃⊥ and the others by L̃∧ we
find that for fixed Z , L̃⊥ decreases in magnitude as Xα increases, while L̃∧ first
increases in magnitude and then decreases. This is shown schematically in Fig.
12.2 where the decrease in L̃⊥ is presented as monotonic. This is true for all except
α̃⊥ which is actually negative at Xα = 0 and first decreases in magnitude, passes
through zero, and then asymptotically approaches zero as Xα → ∞. Although the
figure is only schematic it should be noted that all the L̃⊥ ∼ X−2

α as Xα → ∞
whereas, with the single exception of α̃∧, all the |L̃∧| ∼ |Xα|−1; α̃∧ ∼ X−3

e decays
fastest of all.

The asymptotic behaviour of the perpendicular transport coefficients

L̃⊥ ∼ 1

(�ατα)2
(12.140)

means that classical transport across magnetic field lines decreases with the square
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Fig. 12.2. Schematic illustration of variation of transport coefficients with |Xα|.

of the magnetic field. Unfortunately, this turns out not to be true of toroidal confine-
ment devices where other factors, notably the geometry of the field, come into play.
Transport is neoclassical rather than classical and the perpendicular coefficients
vary more like B−1.

The dependence on collision time is also very interesting and shows a sharp
contrast with the parallel coefficients. From (12.121) and (12.140) we see that the
perpendicular coefficients vary like τ−1

α as Xα → ∞, that is they increase with the
collision frequency να = τ−1

α . Thus, while collisions impede parallel transport they
increase perpendicular transport. The reason for this is easily understood and was
discussed in some detail in Section 8.2.1. In a strong magnetic field particles are
restricted to Larmor orbits in the plane perpendicular to B so transport is impeded
by the field. But collisions disrupt this ordered motion and allow particles to slip
across field lines thereby enhancing perpendicular transport. Note that the contrast-
ing dependence on collision frequency of parallel and perpendicular coefficients
means that in the presence of a strong field, as the collision frequency is increased,
effective transport of matter, momentum and energy is transferred progressively
from the parallel to the perpendicular direction.

The dependence on density and temperature shows a marked difference as well.
From (12.121) and (12.140) it is easily seen that all perpendicular coefficients in-
crease asymptotically with the square of density and decrease with temperature; σ⊥
and α⊥ are proportional to T −3/2

e while κα⊥ and µα
2 decrease like T −1/2

α . Yet another
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striking result arises from a comparison of ion and electron thermal conductivities.
We find

κ i
⊥
κe

⊥
∼ Z2

(
m i

me

)1/2 (Te

Ti

)1/2

(12.141)

Comparing this with (12.138) we see that each of these factors now favours ion
transport over electron transport instead of the other way around. Hence, conclu-
sions in the parallel direction are reversed in the perpendicular direction where
energy transport is dominated by the ions.

On the other hand, comparison of ion and electron viscosities strongly reinforces
the conclusions based on (12.139). For the perpendicular viscosities we get

µi
2

µe
2

∼ 1

Z

(
m i

me

)3/2 (Te

Ti

)1/2

(12.142)

The stronger dependence on mass ratio and the weaker dependence on Z and
temperature ratio means that ions dominate momentum transport even more em-
phatically in the perpendicular direction than in the parallel direction.

Finally, turning to the non-diagonal transport coefficients we see that, with the
exception of α̃∧ ∼ X−3

e , all have the asymptotic form

L̃∧ → − 1

Xα

, |Xα| → ∞ (12.143)

Not only are these coefficients larger by a factor |Xα| than the perpendicular co-
efficients in this limit but they are also independent of any collision coefficients
arising from the collision term. When we substitute (12.143) in (12.121) we find

σ∧ → ne/eB
κe

∧ → 5neTe/2eB
κ i

∧ → −5niTi/2ZeB
µe

1 → neTeme/eB
µi

1 → −niTim i/ZeB




(12.144)

showing no dependence on collisions at all, an effect also noted in Section 8.2.1.
Thus, in the strong B limit, the fluxes associated with these coefficients are non-
dissipative, arising entirely from the anisotropy introduced into plasma motion by
the magnetic field. Balescu shows, in fact, that in general the non-diagonal fluxes
make no contribution to entropy production and it is for this reason that there is no
contradiction implied by the negative coefficients κ i

∧ and µi
1.

Balescu compares his results with other treatments of transport theory. The most
important of these is that by Braginsky (1965) and there is remarkably good agree-
ment between Braginsky’s results and those of Balescu. A particularly important
feature of Balescu’s presentation which we have scarcely touched upon is the
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role of entropy. Balescu shows how the second law of thermodynamics underlies
the classification of the moments and the interpretation of the results, many of
which are quite general and independent of the level of truncation of the moment
approximation.

12.7 MHD equations

We are now ready to take the third and final step in the progression from kinetic
equations to MHD equations. The major change from microscopic to macroscopic
description has already been established in Section 12.6.2 where we obtained a
closed set of equations entirely in terms of macroscopic variables. But substitution
of the transport equations (12.112)–(12.118) and the collision moments into the
hydrodynamic evolution equations (12.87), (12.89), (12.92) and (12.93), yields a
set of equations that is, for most practical purposes, far too complicated. Further
simplification is therefore essential.

To see how this may be done it is useful to summarize the full, closed set of
dissipative MHD equations. Starting with the hydrodynamic evolution equations
we have the continuity equation (12.87)

∂ρ

∂t
= −∇ · (ρu) (12.145)

The momentum balance equation (12.89), with qE neglected, is

∂(ρu)
∂t

= −∇ · (ρuu + PI)+ j × B − ∇ · (���e +���i) (12.146)

The electron and ion temperature equations are obtained from (12.92) and (12.93).
Using (12.109) and (12.110) for the collision terms we have

∂Te

∂t
= −û · ∇Te − 2

3
Te∇ · û − 2

3ne
���e : ∇u

− 2

3ne
∇ · qe + 2

3en2
e

j · Re − 2me

τem i
(Te − Ti) (12.147)

∂Ti

∂t
= −u · ∇Ti − 2

3
Ti∇ · u − 2

3ni
���i : ∇u

− 2

3ni
∇ · qi + 2Zme

τem i
(Te − Ti) (12.148)

where

û = u − m i

Zeρ
j = u − 1

ene
j (12.149)

Note that in the���e term in (12.147) we have dropped the j component because the
product���e · j is quadratic in small quantities.
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Using the approximation (12.90) together with (12.145) and (12.146) we can
combine (12.147) and (12.148) to obtain a single equation for the total plasma
pressure P

∂P

∂t
= −u · ∇P − 5

3
P∇ · u + 5

3e
j · ∇Te − 2

3ene
j · ∇(neTe)

− 2

3
(���e +���i) : ∇u − 2

3
∇ · (qe + qi)+ 2

3ene
j · Re

(12.150)

The collision term Re and the privileged non-hydrodynamical moments are
given by (12.109) and the transport equations (12.112)–(12.114) and (12.120),
where the effective electric field Ê is given by (12.116) and the transport coeffi-
cients by (12.121). The final group of equations closing the set are the reduced
Maxwell equations (12.94)–(12.97).

This is the complete set of dissipative MHD equations but, as already remarked,
some further reduction is desirable for practical purposes. To make contact with the
MHD equations in Chapters 3–5, we rewrite the hydrodynamic equations (12.145)–
(12.150) as follows:

∂ρ

∂t
= −∇ · (ρu)

∂(ρu)
∂t

= −∇ · (ρuu + PI)+ j × B + [DI SS]

∂Tα
∂t

= −u · ∇Tα − 2

3
Tα∇ · u + [DI SS]

∂P

∂t
= −u · ∇P − 5

3
P∇ · u + [DI SS]

where only the non-dissipative terms are shown explicitly and in each equation
[DI SS] represents all the dissipative terms, i.e. all the terms involving collisions.
Note that in most cases this is via the transport coefficients†.

Now recalling that the assumption underlying our approximation scheme is
that hydrodynamical moments are of order zero in ε = τα/τH while non-
hydrodynamical moments are of order one, it is easily seen that dissipative terms
are of order ε times the non-dissipative terms. The kind of further simplification
we might look for, therefore, would be to drop some or all of the dissipative terms.
However, this needs to be done with caution. The mathematical procedure used
in the derivation of the transport equations was a precise and correct linearization
in ε. Dropping dissipative terms which are of higher differential order than the
non-dissipative terms, on the other hand, may change completely the nature of

† In the following discussion we ignore the complication that in certain limits some of the transport coefficients
are independent of τα .
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the solutions. Put the other way round, the predictions of non-dissipative theory
may be very significantly changed by the inclusion of even the smallest amount
of dissipation. If dissipation is to be correctly treated as a small perturbation we
ought to use singular perturbation theory. We shall not pursue this but merely
remind the reader of what was said in Section 4.1. Narrow regions of very steep
gradients (sheaths) arise so that we should not expect a reduced set of equations to
be universally valid even for a given range of physical parameters.

12.7.1 Resistive MHD

The first simplification that we consider is the neglect of all dissipative terms except
electrical resistivity. The justification† for picking out this particular dissipative
term lies in the moment approximation scheme. Putting χα = 0 in (12.101)
eliminates all the non-hydrodynamical moments except j which survives because
ui �= ue. Resistive MHD is therefore equivalent to the 5M approximation.

Setting

qα = 0 ���α = 0 (12.151)

in (12.113), (12.114) and (12.120) gives

αkl = 0 κα
kl = 0 µα

p = 0 (12.152)

for all k, l, and p. Referring back to the discussion of the transport coefficients in
the previous section we see that (12.152) can be achieved by a combination of the
|�ατα| → ∞ limit, to make non-parallel coefficients vanish, and the Tα → 0 limit
(see (12.135)–(12.137)) to make parallel coefficients vanish. Since τα ∝ T 3/2

α /nα
(see (12.122)) we are really talking about low pressure plasmas in strong magnetic
fields which are to be found in diffuse space plasmas such as the solar wind or
planetary atmospheres but not in fusion devices. Alternatively, from (12.121) we
see that (12.152) can be satisfied in the |�α|τα → 0 limit, i.e. in a very strongly
collision-dominated plasma. Neither space nor fusion plasmas satisfy this condi-
tion.

Applying (12.151) to (12.109) gives

Re = me

eτe
j (12.153)

and substituting this in (12.111) we get

me

τe
j + ej × B = e2ne(E + u × B)+ e∇(neTe) (12.154)

† In view of the following discussion about the vanishing of the other coefficients, the retention of σ should be
regarded as an investigation of the effect of keeping one dissipative term.
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or, on solving for j,

j = σ ·
[

E + u × B + 1

ene
∇(neTe)

]
(12.155)

where

σ = e2ne

me
τe
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e
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e
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is identified as the electrical conductivity by comparison of (12.155) with (12.112).
Further simplification of Ohm’s law is obtained by assuming that the ion Larmor

radius rLi is much smaller than the hydrodynamic length scale LH

rLi � LH (12.156)

This is, in fact, the drift approximation which is good for space and fusion plasmas.
Then comparing the last two terms in (12.155) we find

|∇(neTe)|
ene|u × B| ∼ Te

eBuLH
∼
(

rLi

LH

)(cs

u

)(Te

Ti

)1/2

(12.157)

where cs = (Te/m i)
1/2 is the ion acoustic speed. Assuming u ∼ cs and Te ∼ Ti we

can then drop the ∇(neTe) term in Ohm’s law (12.155).
The final step in the simplification of Ohm’s law is to assume that |ue − ui| � u

or

|j| � ene|u| (12.158)

which seems reasonable in view of the fact that ne and u are hydrodynamical
moments of order zero while j is a privileged non-hydrodynamical moment of
order one in our approximation scheme. Here again (12.158) should be used with
caution. It clearly is not valid in static equilibrium problems where u = 0 but j �= 0.
Adoption of (12.158) means that the j×B term in Ohm’s law can also be neglected
so that with (12.156) and (12.158) we get from (12.154)

j = e2neτe

me
(E + u × B) = σ‖(E + u × B) (12.159)

which is the well-known simple form of Ohm’s law for a conductor moving with
velocity u.

The main point to note about (12.159) is that the conductivity tensor has been
reduced to a scalar. For strong magnetic fields this grossly over-estimates the
current perpendicular to the magnetic field for if we were to use (12.155) with
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∇(neTe) neglected we know from our discussion of transport coefficients in the
previous section that σ⊥, σ∧ → 0 as Xα → ∞. There is, therefore, no consistent
derivation of (12.159) and it must, at best, be regarded as a model equation adopted
for mathematical simplicity.

The derivation of the MHD equations is completed by applying (12.151),
(12.153), and (12.158) to (12.150) giving

∂P

∂t
+ u · ∇P = −5P

3
∇ · u + 2(∇ × B)2

3σ‖µ2
0

(12.160)

where (12.95) has been used to substitute for j in the last term. Note that Te no
longer appears in (12.160) and, since neither Te nor Ti appear except implicitly
through P in the momentum equation (12.146), we can use (12.160) instead of
both (12.147) and (12.148).

In summarizing the set of resistive MHD equations it is useful to eliminate some
of the variables. Thus the current density j is determined by (12.95) and the electric
field E by (12.159). Then using (12.145), (12.95) and (12.151) the momentum
balance equation (12.146) becomes

ρ
Du
Dt

= −∇P − 1

µ0
B × (∇ × B) (12.161)

Finally, substituting (12.95) in (12.159) and (12.159) in (12.94) gives, in view of
(12.97),

∂B
∂t

= ∇ × (u × B)+ 1

µ0σ‖
∇2B (12.162)

The set has been reduced to (12.145) and (12.160)–(12.162) for the three hydro-
dynamical variables ρ, u and P and the magnetic field B. It is easily seen that
these correspond to the equations in Table 3.1 for γ = 5/3, in accordance with our
assumption that the plasma is a perfect gas having three degrees of freedom.

Exercises

12.1 Show that the Liouville operator L N is invariant under interchanges of like
particles and hence deduce that the generic N -particle distribution function
obeys the Liouville equation (12.5).

12.2 In the case of no external forces, compare the order of magnitude of the
terms in (12.23). Taking ω−1

p and λD as characteristic time and length
scales show that the collision term (12.24) is of order g/ f f compared with
all the other terms.

12.3 By Fourier transform, or otherwise, solve (12.40) and hence obtain the
equilibium pair correlation function (12.41).
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12.4 Obtain the general moment equation (12.68) from the kinetic equation
(12.66) and show that the first three moments are given by (12.74)–(12.76).
Explain physically why there is no term containing B in (12.76).

12.5 Invert the set of equations (12.81)–(12.84) defining the one-fluid variables
to obtain the set (12.85).

12.6 Carry out the steps indicated in the text to transform the two-fluid moment
equations (12.74) and (12.75) to the equivalent set of equations (12.87)–
(12.91) in terms of one-fluid variables.

12.7 Under what circumstances might electron viscosity become significant?
How can this be explained physically?

12.8 Invert (12.154) to obtain (12.155). What is the physical significance of the
gradient term and how do you explain it?



Appendix 1

Numerical values of physical constants and plasma
parameters

Physical constants
Velocity of light c 2.998 × 108 m s−1

Electron charge e 1.602 × 10−19 C
Electron mass me 9.109 × 10−31 kg
Proton mass mp 1.673 × 10−27 kg
Proton/electron mass ratio mp/me 1.836 × 103

Classical electron radius re 2.818 × 10−15 m
Thomson scattering cross-section σT 6.652 × 10−29 m2

Planck’s constant h 6.626 × 10−34 J s
Electron volt eV 1.602 × 10−19 J
Ionization potential of hydrogen 2.180 × 10−18 J
Boltzmann’s constant kB 1.381 × 10−23 J K−1

Vacuum permittivity ε0 8.854 × 10−12 F m−1

Vacuum permeability µ0 1.257 × 10−6 H m−1

Gravitational constant G 6.673 × 10−11 m3 kg−1 s−2

Solar mass M� 1.989 × 1030 kg
Solar radius R� 6.960 × 108 m
Sun–Earth distance 1 AU 1.496 × 1011 m
Earth’s gravitational acceleration g 9.807 m s−2

Temperature equivalent to 1 eV 1.160 × 104 K

Plasma parameters
Electron plasma frequency

(
nee2/meε0

)1/2
56.4 n1/2

e rad s−1

Ion plasma frequency
(
ni(Ze)2/m iε0

)1/2
1.32 Z(ni/A)1/2 rad s−1

Electron cyclotron frequency eB/me 1.76 × 1011 B rad s−1

Ion cyclotron frequency ZeB/m i 9.58 × 107 (Z B/A) rad s−1

Debye length
(
ε0kBTe/nee2

)1/2
69.1 (Te/ne)

1/2 m
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Electron Larmor radius mev⊥/eB 5.68 × 10−12 v⊥ B−1 m
Ion Larmor radius m iv⊥/ZeB 1.04 × 10−8 v⊥(A/Z B)m
Electron thermal speed (kBTe/me)

1/2 3.89 × 103 T 1/2
e m s−1

Ion thermal speed (kBTi/m i)
1/2 90.9 (Ti/A)1/2 m s−1

In the above formulae densities are expressed in m−3, B in teslas, Te, Ti in K and
v⊥ (m s−1) is the component of particle velocity perpendicular to B.
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List of symbols

The following is a list of symbols which appear in the text beyond the location of
their definition or first introduction and indicates the page on which this may be
found. Some of these symbols also appear with subscript e(i) indicating electron
(ion) equivalents. Likewise, symbols with subscript ‖ (⊥) indicate the component
parallel (perpendicular) to the magnetic field.

Roman alphabet

Symbol Description Page

A magnetic vector potential 32
A atomic number 9
a minor radius of torus 95
as (ms/2kBTs)

1/2 313
B magnetic field intensity 13
B̃ vacuum magnetic field 75
Bind magnetic field induced by magnetization current 16
B magnetic field magnitude 11
Bp poloidal magnetic field 33
Bt toroidal magnetic field 33
b unit vector in direction of B 43
b impact parameter 309
b0 impact parameter for π/2 scattering 10
Cv specific heat at constant volume 184
Cα ‘collision term’ for wave–particle interactions 409
cα random or thermal velocity for species α 481
c speed of light 18
cs ion acoustic speed 65
D component of cold plasma dielectric tensor 205
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D diffusion coefficient 299
D(k, p) plasma dielectric function 258
Da ambipolar diffusion coefficient 301
E electric field 13
Ê effective electric field 494
Es scattered electric field 355
ET electric field of transverse wave 395
E energy 3
e magnitude of electronic charge 7
e j charge on particle j 13
E internal energy per unit mass 55
E(k, t) spectral energy density of electrostatic field 380
F force per unit mass 52
Fi (t) force on electron i at time t 465
F field reversal parameter 144
F fast wave 218
F0(u) one-dimensional distribution function 258
f (1) one-particle distribution function 469
f (r, v, t) particle distribution function 252
fK(r, v, t) Klimontovich distribution function 252
fN N -particle distribution function 466
fs distribution function of scattering particles 309
fs generic s-particle distribution function 467
fα0 local Maxwellian distribution for species α 489
G(v) Rosenbluth potential 312
G(ωb0/v) Gaunt factor 336
g relative velocity of colliding particles 309
g plasma parameter 8
g 1 − n·βββ 326
g(1, 2) pair correlation function 469
ḡ(ω, T ) Maxwellian-averaged Gaunt factor 338
H(v) Rosenbluth potential 312
I unit dyadic 78
I total plasma current 87
I internal energy 183
Ip poloidal current 98
Iω(s) radiation intensity 330
J longitudinal invariant 28
j current density 13
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jG current density due to grad B drift 23
jg guiding centre current density 70
jM magnetization current density 16
jP polarization current density 37
jp(t) poloidal (toroidal) current density 99
K magnetic helicity 103
K common coupling coefficient 391
kL wavenumber of Langmuir wave 394
ks wavenumber of ion acoustic wave 394
ks wavenumber of scattered wave 356
kT wavenumber of transverse wave 394
kB Boltzmann’s constant 3
kc critical wavenumber 240
L scale length 12
L component of cold plasma dielectric tensor 205
L left circularly polarized wave 210
L Langmuir wave 394
LH hydrodynamic length scale 49
Ls shock thickness 408
L‖, L⊥, L∧ transport coefficients 495
L̃‖ dimensionless L‖ 497
L̃⊥, L̃∧ dimensionless L⊥, L∧ 498
ln ζ Euler’s constant 338
ln Coulomb logarithm 10
M magnetization per unit volume due to Larmor motion 16
M Mach number 187
MA Alfvén Mach number 174
M� solar mass 170
m particle mass 14
m j mass of particle j 13
ms mass of scattering particle 309
N total particle number density 57
n unit vector normal to surface 74
n dimensionless wave propagation vector 203
n̂ unit vector in direction of shock propagation 184
n particle number density 3
n refractive index 331
n quantum state 339
nb number density of electron beam 241



512 List of symbols

O ordinary wave 214
P pressure 54
P component of cold plasma dielectric tensor 205
P power radiated by accelerated charge 326
P total scalar pressure 486
Pl power in harmonic line l 345
P wave polarization 199
P polarization dyadic 355
Q heat energy per unit mass 55
Q 1 + k2c2/ω2

pe 232
Qα rate of thermal energy transfer to species α 484
q heat flux 297
qα heat flux for species α 482
q charge density 13
q safety factor 34
qT test particle charge 287
Rα rate of momentum transfer to species α 484
R hydrodynamic Reynolds number 61
R pressure ratio across shock 185
R component of cold plasma dielectric tensor 205
R right circularly polarized wave 210
R |r − r0| 325
R reflection coefficient 428
RE Earth’s radius 7
RM magnetic Reynolds number 61
Ry Rydberg constant 340
R0 tokamak major radius 33
R0 gas constant 58
R� solar radius 173
rg guiding centre position vector 15
r j position vector of particle j 13
r tokamak minor radius 33
r density ratio across shock 185
rA Alfvén radius 172
re classical electron radius 328
rL Larmor radius 15
S Poynting vector 200
S Lundquist number 141
S entropy 184



List of symbols 513

S component of cold plasma dielectric tensor 205
S slow wave 218
S sound wave 394
S(k, ω) form factor 358
T Maxwell stress tensor 78
T temperature 3
T characteristic time scale 12
T transverse wave 395
T tunnelling (transmission) coefficient 434
T ′ scattered transverse wave 394
Tα temperature of species α (in energy units) 481
t ′ retarded time 325
tF time scale for magnetic field changes 29
U total energy density 78
u velocity of fluid element 49
V(t) test particle velocity 313
V warm plasma thermal speed 227
V wave phase velocity 269
V (x) electrostatic potential in plasma sheath 454
Vb electron beam thermal speed 273
Vp(s) group velocity of Langmuir (Raman scattered) wave 444
Vth thermal speed 10
vB combined grad B and curvature drift velocity 22
vb flow velocity of electron beam 241
vc curvature drift velocity 21
vE E × B drift velocity 17
vG grad B drift velocity 20
vg guiding centre velocity 43
vP polarization drift velocity 37
vp poloidal velocity 34
vs velocity of scattering particle 309
vA Alfvén speed 130
vd electron–ion drift velocity 243
vg group velocity 201
vp phase velocity 72
v0 quiver velocity 441
W particle kinetic energy 14
W total potential energy 120
Wp(s,v) plasma (surface, vacuum) potential energy 122



514 List of symbols

X extraordinary wave 214
Xα �ατα 498
Z charge state 9
Z(ζ ) plasma dispersion function 265
z atomic number of scattered particle 310
zc cut-off point in WKBJ model 428
zs atomic number of scattering particle 310

Greek alphabet

α Clebsch variable 32
α2 ω2

p/ω
2 222

αkl thermoelectric coefficient 494
αω absorption coefficient 331
βββ v/c 47
β Clebsch variable 32
β ratio of plasma to magnetic pressure 61
β2 |�i�e|/ω2 222
βe |�e|/ω 222
βi �i/ω 222
βp(t) poloidal (toroidal) β 89
��� particle flux 299
� z2e2 ln/4πε2

0m2 311
γ (1 − v2/c2)−1/2 38
γ ratio of specific heats 57
γ instability growth rate 121
γ α2/β2 = c2/v2

A 222
γ Landau damping decrement 261
�′ discontinuity in magnetic field gradient 152
ε inverse aspect ratio 33
ε ratio of collision time to hydrodynamic time 493
εω emission coefficient 331
ε cold plasma dielectric tensor 203
ε0 vacuum permittivity 8
η plasma resistivity 140
θ pitch angle 27
θ poloidal angle 33
θ wave propagation angle relative to B 205
θ scattering angle 309
θres resonant angle 207



List of symbols 515

ι rotational transform 88
κ curvature of magnetic field 122
κ coefficient of thermal conductivity 56
καkl element of thermal conductivity tensor for species α 494
λ k2kBT/m�2

e 280
λc collisional mean free path 63
λD Debye length 8
µB magnetic moment 16
µ coefficient of viscosity 54
µ0 vacuum magnetic permeability 13
µα

klmn fourth-order viscosity tensor for species α 495
µα

1,2,3,4,‖ independent elements of viscosity tensor 495
ν kinematic viscosity 192
νc collision frequency 10
νei electron–ion collision frequency 10
ξ(r, t) displacement vector 109
�α

i j traceless pressure tensor for species α 481
ρ mass density 51
σ electrical conductivity tensor 203
σ collisional cross-section 3
σ electrical conductivity 56
σ(|g|, θ) differential scattering cross-section 309
σkl element of electrical conductivity tensor 494
τ t − x/c 38
τ optical depth 332
τA Alfvén transit time 140
τB bounce time 306
τc collision time 62
τe(i) electron (ion) collision time 62
τG gravitational time scale 155
τH hydrodynamic time 58
τL Larmor period 32
τP precession time 32
τR resistive diffusion time 140
τ‖ longitudinal invariant transit time 29
� magnetic flux 31
�i j element of stress tensor 52
φ magnetic scalar potential 113
φ(x) error function 314



516 List of symbols

φ(z) wave phase or eikonal 427
φi j electrostatic potential between electrons i and j 468
χα susceptibility of species α 362
χα normalized deviation from local Maxwellian 489
�(x) [φ(x)− xφ′(x)]/2x2 314
ψ flux function 96
� Larmor frequency 15
� solid angle 326
� relativistic Larmor frequency (�0/γ ) 344
ωL L-mode cut-off frequency 210
ωL Langmuir wave frequency 394
ωLH lower hybrid resonance frequency 209
ωp plasma frequency 8
ωR R-mode cut-off frequency 210
ωs ion acoustic wave frequency 394
ωT transverse electromagnetic pump wave frequency 394
ωUH upper hybrid resonance frequency 209
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Abel inversion, 432
acoustic wave, 132, 211
adiabatic gas law, 61, 176, 228
adiabatic invariance, 24–36
adiabatic invariants, 12, 25, 28, 32

first, see magnetic moment
relativistic, 38
second, 25, 28–31, 36, 68
third, 25, 31, 32

Airy functions, 430
Airy wavenumber, 459
Alfvén critical point, 174, 195
Alfvén Mach number, 147, 174
Alfvén radius, 172
Alfvén wave, 197

compressional, 122, 132, 211, 215, 223, 235
shear, 122, 131, 211, 233, 235, 237

alpha-effect, 165–167
amplifying waves, 276, 429
Ampère’s law, 58
anisotropic plasmas, 67
anisotropy parameter, 321
anomalous dissipation, 405
anomalous transport, 268, 488
anti-dynamo theorem, 163
Appleton–Hartree theory, 197
arc discharge

characteristics of, 141
plasma parameters in, 10

argument principle, 269

Balescu–Lenard equation, 472, 479
ballistic term, 379, 388
banana orbit, 35, 46, 305
BBGKY hierarchy, 468, 469, 494
Bennett relation, 87
Bernstein modes, 277, 286

electron, 278–283
Landau damping of, 281

ion, 293
Biermann’s battery mechanism, 163, 194
black body intensity, 333

Rayleigh–Jeans form, 333
Bogolyubov hypothesis, 472, 476, 477

Bohm ion saturation current, 456
Bohm sheath criterion, 456
Boltzmann collision integral, 307
Boltzmann distribution, 7, 293
Boltzmann equation, 254
Boltzmann’s H-theorem, 313
bounce frequency, 382
bounce time, 45, 306
boundary conditions, 49

electromagnetic, 74
boundary sheath, 8
bow shock, 177, 197, 244, 318, 405, 410, 421

electron foreshock, 421
ion foreshock, 421
thickness, 405

bremsstrahlung, 3
as plasma diagnostic, 343
emission coefficient, 337, 339
plasma corrections to, 342
power loss, 3
power radiated, 335

Budden equation, 434
buoyancy force, 106

carbon cycle, 2
cavitons, 403
characteristic time, 12
charge conservation equation, 486
charge density, 13, 485
charge separation, 17, 23
chromosphere, 6, 148
classical thermodynamics

relations of, 55
Clebsch variables, 32, 104, 134
cluster expansion, 469, 471
CMA diagram, 221, 224
cold plasma, 198

approximation, 72, 408
dielectric tensor, 203
dispersion relations for oblique propagation,

222–227
general dispersion relation, 205

properties of, 217
wave equations, 72, 411

523
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collision broadening, 347
collision coefficients

for energy exchange, 317
collision frequency, 10, 254, 296, 315, 499

effective, 306
electron–electron, 316
electron–ion, 316
in collisionless shock, 417
ion, 300
ion–electron, 316
ion–ion, 316

collision integral, 470
Balescu–Lenard, 480
Landau, 480

collision term, 297, 470
BGK model, 297, 307
Fokker–Planck, 307–312

collision time, 62, 476
effective, 306
electron, 62
electron–electron, 317
electron–ion, 10
ion, 62
ion–ion, 317

collisional cross-section, 3
collisional dissipation, 407
collisional relaxation, 317, 319
collisionless approximation, 73
collisionless MHD, 69–70

equations, 69, 71
collisionless shocks, 181, 405

classification, 408
Earth’s bow shock, see bow shock
energy, 408
entropy, 408
foot in magnetic field structure, 420
laminar, 409
oblique, 410, 420
parallel, 410, 420
perpendicular, 410

self-consistent model of, 419
quasi-parallel, 420
quasi-perpendicular, 420, 422
structure, 407
supercritical, 420
turbulent, 410

collisions, 8, 10, 470
Coulomb, 308
electron–ion, 3

compression wave, 406
Compton field, 47
conductivity

electrical, see electrical conductivity
thermal, see thermal conductivity

confinement
inertial, 5
magnetic, 84
toroidal, 304

confinement time, 5
conservation equations, 182

conservation relations, 78
collisional, 483, 484

containment time, 5
continuity equation, 78, 486

mass, 52
convective derivative, 50, 392
convective gain, see Raman gain, convective
correspondence principle, 340
Couette flow, 133
Coulomb logarithm, 10, 311
Coulomb potential, 472, 475
critical density, 342, 396
critical surface, 395
current

Chapman–Ferraro, 177
current density, 13, 485

magnetization, 23, 70
plasma, 22
polarization, 37

current filamentation, 155
current sheet, 141, 146, 178

model, 147
curvature drift, 22, 25
cut-offs, 207, 210, 219

back-to-back with resonance, 433
wave behaviour near, 429

cyclotron frequency, 12, 15
cyclotron resonance, 47

de Broglie wavelength, 335
de Hoffmann–Teller frame of reference, 189, 421
Debye length, 8, 262
Debye shielding, 475

potential, 288
Debye sphere, 8, 10, 256, 307, 475, 476
degrees of freedom

in MHD shock, 181
number of, 57

differential scattering cross-section, 309
diffusion

ambipolar, 300
coefficient of, 301

coefficient, 299
in Fokker–Planck equation, 312
in neoclassical transport, 306

in magnetic field, 301
random walk model of, 304
time, 82

direct drive, 6
dispersion curves

crossing of for uncoupled modes, 436
dispersion relation, 200

Appleton–Hartree, 225, 230
Bernstein modes, 280
compressional Alfvén wave, 411
electron cyclotron wave, 212
electron plasma waves, 260, 400
extraordinary mode, 226
ideal MHD waves, 131
ion acoustic wave, 230, 267
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dispersion relation (cont.)
ion cyclotron wave, 212, 224, 293

oblique propagation in warm plasma, 250
longitudinal waves

beam-carrying cold plasma, 239
warm plasma, 229

low frequency warm plasma waves, 232
stimulated Raman scattering

in homogeneous plasma, 441
transverse waves, 210
two-stream instability, 241
whistler wave, 212

oblique propagation, 236
displacement current, 23, 58, 236
distribution function, 252, 312

N -particle, 466
bi-Maxwellian, 302, 319
bump-on-tail, 380
collisional relaxation of, 318
D-shaped, 179
equilibrium, 283, 284, 473
exact N -particle, 465
generic, 467
Gibbs, 472
ion, 179
isotropic two-temperature, 318
Klimontovich, 252
Maxwellian, 260, 289, 473

local, 59, 297, 489
relativistic, 349

non-Maxwellian, 318
self-similar, 318
specific, 467
test particle, 313

Doppler broadening, see electron cyclotron radiation,
Doppler broadening

Doppler shift
of light frequency, 40

double adiabatic approximation, 67
double adiabatic theory, 70
dressed test particle, see Thomson scattering,

coherent, dressed test particle approach
drift approximation, 504
drift instabilities, 283, 416, 420
drift velocity, 43

E × B, 17, 18, 43, 285, 419
curvature, 21, 43
due to grad B and curvature, 22, 34, 45
due to non-electromagnetic force, 18
grad B, 19, 20, 43, 283
in plane-polarized wave, 40
ion–electron, 285
macroscopic, 284
polarization, 37

drift waves, 417
dynamical friction, 313

coefficient of in Fokker–Planck equation, 312

Earth’s core
characteristics of, 141

Earth’s ring current, 45
echo wave, 388
efficiency factor, 3
eikonal, 427

approximation, 428
Einstein relation, 299, 301
electric field

effective, 65, 494
Feynman representation of, 325

electrical conductivity, 298, 321, 494, 498, 504
scalar

condition for, 65
tensor, 203, 504

electron acoustic mode, 292
electron cyclotron emission

as diagnostic for electron temperature, 347
electron cyclotron radiation, 344

Doppler broadening, 347
emission lines, 344

Doppler shift, 345
relativistic frequency shift, 345

harmonic lines, 346
plasma cyclotron emissivity, 346
shape function, 347

electron cyclotron wave, 215, 237
electron flux, 491
electron line density, 87
electron runaway, 314
electron trapping, 33
electrostatic force, 58
energy exchange

ion–electron, 62
energy flux, 79, 200
energy principle, 111, 119–123
entropy, 388, 490, 500

fluctuations, 369
of perfect gas, 184

equation of motion
of fluid element, 52–55

equations of state, 55
internal energy, 57
temperature, 57

Erokhin mode conversion equation, 435
Ettinghausen effect, 495
evanescent waves, 429
evolution equations, 482

electron temperature, 487
ion temperature, 487

expansion wave, 406
extraordinary mode, 214, 411

Fermi acceleration, 36
field reversal parameter, 144
filamentation, 405
finite element method, 123
finite transit time effect, 357
floating potential, 454
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flow velocity, 49, 70, 480
electron, 489
ion, 489
plasma, 485, 489

fluid element, 49, 268
dimension of, 63

flux conservation, 81
flux function, 96, 98
flux invariant, see adiabatic invariants, third
flux transfer events, 179
flux tube, 80

length of, 68
model, 105

Fokker–Planck equation, 307–313, 318, 322, 480
force-free fields, 102–105, 144
Fourier law, 297

electron, 497
ion, 496

free–bound transitions, 339
free–free absorption, 341

coefficient, 341
frequency mismatch, 393
frictional coefficient, 314
frozen flux theorem, 79, 80
fusion plasmas, 67, 141, 504

gas constant, 58
Gaunt factor, 335, 336

Born approximation for, 339
Maxwellian-averaged, 338, 339

geomagnetic field, 44, 169, 177, 197
Grad–Shafranov equation, 98–100, 134

numerical solution of, 100
gravitational drift, 19, 136
gravitational field

solar, 106
gravitational force

equivalent, 125
group velocity, 201
guiding centre, 15, 29, 31–34, 41

approximation, 19, 41
current, 70
drift, 22, 23, 42, 93
drift orbit of, 25
model, 12
motion of, 16, 19, 22, 41
plasma model, 69, 70
precession of, 32
velocity of, 17, 43

gyro-frequency, 15
gyro-magnetic flux, 303
gyro-phase, 15
gyro-radius, see Larmor radius

Hall current, 66, 495
Hall effect, 65
Hartmann number, 133
heat conduction, 56

coefficient of, 56
heat energy, 56

heat flux, 299, 491, 495, 497
electron, 496
ion, 496
tensor, 481
vector, 482

Helmholtz equation, 104
hohlraum, 6
Hugoniot relation

hydrodynamic, 184, 190
hydromagnetic, 184, 195

ideal MHD, 60, 77
approximations, 62, 67
equations, 61, 77
stability, 70

impact parameter, 310
indirect drive, 6
induced scattering, 389
induction equation, 59, 166, 193

for variable resistivity, 149
inertial confinement fusion, 5

plasma parameters in, 10
instabilities

absolute, 244–248, 276
ballooning, 119, 129
beam–plasma, 241, 272

growth rate, 273
kinetic, 273

bump-on-tail, 268, 273
growth rate, 273

Buneman, 243, 274
convective, 244–247, 276
current-driven, 122
disruptive, 160
drift wave, 285
fixed boundary, 122
fluid, 268
flute

growth rate, 136
free boundary, 122
gravitational interchange, 155
in beam–plasma systems, 238
interchange, 123, 124
ion acoustic, 285

in current-carrying plasma, 274
kink, 118, 122

stability condition, 118
magnetic buoyancy, 136
MHD, 121
Mirnov, 160
modulational, 402, 404
non-linear saturation of, 377
parametric, 392–397

parametric decay, 395
stimulated Brillouin, see stimulated Brillouin

scattering
stimulated Raman, see stimulated Raman

scattering
two plasmon decay, 396

pressure-driven, 122
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Rayleigh–Taylor, 124
MHD analogue of, 124

resistive, 148
characteristics of, 156

rippling mode, 156
sausage, 115, 128

marginal stability condition for, 116
sawtooth, 160
streaming, 244
tearing mode, 146, 148, 151, 161, 194

growth rate, 154
two-stream, 240, 314

interactions
collective, 8, 408
collisional, 253
Coulomb, 309, 470
electron, 468, 470
laser–plasma, 392, 394
resonant, 262, 274, 282
three-wave, 392

instability threshold condition, 393
wave–particle, 198, 409
wave–wave, 389, 392

internal energy, 56, 67
of fluid element, 55

interstellar plasma, 11
inverse aspect ratio, 33, 99, 305
inverse bremsstrahlung, 341
inverse Faraday effect, 47
ion acoustic wave, 230, 236, 237, 394, 397

Landau damping of, 265
ion cyclotron wave, 235, 237

first, 235
second, 235

ion flux, 491
ion plasma wave, 236
ionosphere, 197, 224

plasma parameters in, 10
isentropic transitions, 408
isobaric surface, 84

Jeans theorem, 255, 283
Joule heating, 56

kinematic dynamo problem, 163
kinetic energy

average, 16
conservation of, 14
flow, 56
particle, 14
plasma, 16

kinetic equation, 253, 479
collisional, 254, 289, 296
collisionless, 253
Landau, 472, 479, 498

kinetic temperature, 481
Klimontovich distribution function, see distribution

function, Klimontovich
Kruskal–Shafranov stability criterion, 118

Landau damping, 227, 256, 274
decrement, 261, 382
electron, 265, 267, 275
experimental verification, 263
ion, 265, 267
non-linear, 383
physical origin, 262

Landau equation, see kinetic equation, Landau
Landau growth, 262, 274
Landau theory

non-linear, 377, 388
Langmuir collapse, 404
Langmuir probe characteristics, 456
Langmuir waves, 229, 263, 394

Landau damping of, 289, 295
radiation from, 450

combination line, 451
in laser-produced plasmas, 453

Larmor formula, 328, 335
Larmor frequency, 15, 18

relativistic, 38
Larmor motion, 16, 19
Larmor orbit, 18, 19, 281
Larmor period, 16
Larmor precession, 25
Larmor radius, 12, 15, 21, 302

electron, 282
instantaneous, 18

laser-produced plasmas, 394
channel formation in, see ponderomotive force,

channel formation
harmonic emission from, 451
plasma line emission, 451
resonance absorption in, see resonant absorption
stimulated Raman scattering in, see stimulated

Raman scattering, in inhomogeneous plasmas
Lawson criterion, 3–5, 88
Leibnitz theorem, 50, 79
lighthouse effect, 351
linear mode conversion, 435

mode conversion coefficient, 437, 438
reflection coefficient, 438
transmission coefficient, 438

Liouville equation, 466, 468
Liouville operator, 466, 468
Liénard–Wiechert potentials, 325
longitudinal invariant, see adiabatic invariants, second
longitudinal invariant surface, 32
Lorentz equation

non-relativistic, 13
relativistic, 38

Lorentz gas model, 297
Lorentzian line shape, 369
loss cone, 28
lower hybrid wave, 215
Lundquist number, 141, 146, 193

Mach number, 413
critical, 419, 420

magnetic bottle, 4, 27, 28
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magnetic buoyancy, 106
magnetic containment fusion, 5
magnetic convection equation, 68
magnetic curvature, 128
magnetic energy, 104
magnetic field

bumpy, 44
force-free, 99
generation, 162
geomagnetic tail, see magnetotail, magnetic field in
induced, 16
interplanetary, 195
measurement by Thomson scattering, see Thomson

scattering, coherent, effect of magnetic field
reconnection, 146
reversal, 144
solar, 106

magnetic field lines
ergodic, 94
pitch of, 88

magnetic flux
poloidal, 95
toroidal, 96

magnetic helicity, 102, 103, 143, 166
magnetic islands, 142, 158
magnetic knot, 105
magnetic mirror, 25, 26, 33, 36, 305
magnetic modulation of scattered light spectrum, 360
magnetic moment, 16, 25, 68

invariance of, 25, 34, 36, 44, 68
magnetic pressure, 83
magnetic reconnection, 142, 148, 177–179

driven, 145
spontaneous, 145

magnetic relaxation, 142
magnetic shear, 22, 125, 129, 155, 158
magnetic surface, 80
magnetic tension, 83
magnetic trap, 31
magnetic well, 93, 129
magnetization, 16, 23
magneto-ionic theory, 224
magnetoacoustic wave, 233, 411

fast, 132
slow, 132

magnetohydrostatic condition, 106
magnetopause, 31, 177–179
magnetosheath, 177–179, 405
magnetosphere, 7, 146, 169, 177–179, 197
magnetotail, 7, 177

magnetic field in, 44
Manley–Rowe relations, 392
Markov system, 494
Markovian, 307
mass conservation, 52
mass density, 485
Maxwell equations, 13, 23, 182, 255, 409

reduced, 488
Maxwell stress tensor, see stress tensor, Maxwell

mean free path, 469
collisional, 302, 304, 405
electron, 10, 63, 476
electron–ion, 176
ion, 63
turbulent dissipation, 408

MHD approximation, 58, 63, 488, 489
non-relativistic, 63

MHD equations, 48, 480, 488
dissipative, 501

MHD equilibria
solar, 105

MHD instabilities, see instabilities, MHD
micro-instabilities, 262, 268
minimum B stability condition, 129
Mirnov oscillations, 158
mirror ratio, 27
mirror trap, 27–30
mobility

electron, 300
ion, 300

mode conversion, see linear mode conversion
mode rational surface, 157
moment equations, 480–487

general moment equation, 483
moment integrals of distribution function, 482

electrodynamical, 491
hydrodynamical, 491–494
non-hydrodynamical, 491–494
non-plasmadynamical, 491
plasmadynamical, 491

momentum equation
parallel, 70
perpendicular, 70

Navier–Stokes equation, 55
neoclassical theory, 491
neoclassical transport, 304, 487
Nernst effect, 495
neutral sheet, 44, 142, 146
non-linear Schrödinger equation, 403, 423
number density, 7, 480
Nyquist diagrams, 270

Ohm’s law, 59, 64, 496, 504
generalized, 64, 73, 486, 494

in MHD approximation, 65
in warm plasma wave equations, 73, 231

omega-effect, 165–167
Onsager symmetry, 492
optical depth, see radiative transport equation, optical

depth
optically thick plasma, 333
optically thin plasma, 332
ordinary mode, 214, 411

pair correlation function, 469, 470
equilibrium, 475

parameter space, 10, 218, 219
parametric amplification, 376
parametric waves, 377



Index 529

particle acceleration, 35
at shocks, 421

particle drifts, 22
particle energy, 32
particle orbits

in torus, 93
particle trapping, 382–386, 397

in beam–plasma instability, 384
passing particles, 33–34
path variables, 56
Peltier effect, 497
Penrose criterion, 272
perfect gas, 57
Petschek model, 147–148, 193

maximum reconnection rate in, 147
phase integral, 428
phase mixing, 388
phase shift, 432
phase space, 466
phase velocity, 201
photosphere, 6, 7, 106, 107
pinch parameter, 144
pitch angle, 27, 36, 45
plasma beta, 83, 86, 88, 105

poloidal, 89
toroidal, 89

plasma bremsstrahlung, 334–339
spectrum

classical, 336
quantum mechanical, 338

plasma cavities, 402
plasma characteristics, 7
plasma containment, 4, 93, 108, 161
plasma diamagnetism, 16, 23
plasma dielectric function, 258, 276, 472, 479
plasma dispersion function, 265
plasma echoes, 388, 423
plasma frequency, 8

electron, 8, 254, 258
ion, 9

plasma oscillations, 8, 23, 260
coherent, 408
electron, 197, 229
longitudinal, 209

plasma parameter, 8, 10
plasma reflectometry, 432
plasma resistivity, 140

variable, 149
plasma sheath, 453

equation, 454
plasma sheet, 31, 44, 244
plasma transport, 158, 296
plasma wave equations, 49
plasma waves

electron, 227, 397
ion, 230

Plemelj formula, 479
Poisson equation, 378

polarization
circular, 199
elliptical, 199
extraordinary mode, 217
linear, 199

polarization drift, 37
polarization dyadic, 355
ponderomotive force, 40, 398, 401, 404

channel formation, 41
power radiated by accelerated charge, 326
Poynting flux, 357
Poynting theorem, 200
Poynting vector, 200

for radiation field, 326
pressure

fluid in motion, 54
scalar, 481, 486
tensor, 481, 491

traceless, 481, 495
thermodynamic, 54

prominences, 108
proton–proton cycle, 2
pseudo-resonance, 235, 236

quasi-linear theory, 377–382, 388
quasi-neutrality condition, 57, 64, 413, 486
quiver motion

electron, 40
quiver velocity, 441

radial force balance, 85
radial pressure balance, 101
radiation

absorption coefficient, 331
broadening, 347
emission coefficient, 331
flux, 330

spectral density of, 330
frequency spectrum from accelerated charge, 328
from Langmuir waves

combination line, see Langmuir waves, radiation
from, combination line

harmonic emission, see laser-produced plasmas,
harmonic emission from

plasma line, see laser-produced plasmas, plasma
line emission

intensity, 330
pressure, 355
temperature, 334

radiation transport in plasma, 330
radiative recombination, 339
radiative transport equation, 332

optical depth, 332
source function, 332

radio waves, 197
radiofrequency heating

ion cyclotron resonance, 439
of tokamak plasma, 439

Raman decay waves, 442
Raman gain, convective, 445
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Raman resonance, 444
detuning condition, 446
width, 446

Raman scattered light wave, 442
Raman threshold

convective, 446
Rankine–Hugoniot equations, 184
ratio of specific heats, 57
ray path, 331
ray-tracing approximation, 428
Rayleigh-Jeans limit, see black body intensity,

Rayleigh-Jeans limit
recombination radiation, 339

emission coefficient, 340
reflected ions, 419
reflection coefficient, 431
reflectometry, see plasma reflectometry
resistive MHD, 59, 503

approximations, 60, 66
equations, 60, 505

resistivity, see plasma resistivity
resonance, 207

accessibility, 433
conditions, 389

induced scattering, 389
linear Landau damping, 389
particle trapping, 389
wave–wave interactions, 389

electron cyclotron, 208, 212, 226, 236
heating

electron cyclotron, 439
ion cyclotron, 208, 212, 223, 235, 236
lower hybrid, 209, 215
principal, 207, 210, 219
upper hybrid, 209, 216
wave behaviour near, 433

resonant absorption, 460
shape function, 460
tunnelling, 459

resonant angle, 207
resonant electrons, 382
resonant surface, 128, 129, 152, 156
resonant triad, 389
response function, 277
retarded potentials, 325
retarded time, 325
reversed field pinch, 99, 143
Reynolds number, 192

hydrodynamic, 61
magnetic, 61, 140, 193

Righi–Leduc effect, 495
Rosenbluth convective gain threshold, 446
Rosenbluth potentials, 311
rotating star, 194
rotational transform, 88, 94

safety factor, 34, 88, 118, 130, 160, 305
sawtooth oscillations, 159
scale length, 12

diffusion in magnetic field, 302
dispersive steepening, 407

scale length (cont.)
sunspot, 105
wave-front, 412, 415, 418
wavetrain decay, 418

screw pinch, 87, 99
self-consistent field, 12, 470, 479
Shafranov shift, 101, 134
shape function

electron cyclotron radiation, 347
Salpeter, 364
synchrotron radiation, 352

sheath thickness, 301, 463
shock waves, 285

astrophysical, 420
collisional, 181, 406
collisionless, see collisionless shocks
fast, 190
formation of, 405
jump conditions, 184, 186, 407
low β, 408
MHD, 179
planetary, 420
slow, 190
structure, 181, 190, 407
switch-off, 190
switch-on, 187, 190
thickness, 180, 192

skin current, 74
small Larmor radius approximation, 408
solar corona, 6, 169

characteristics of, 141
plasma parameters in, 10

solar flares, 28, 108, 142, 146, 177
solar wind, 7, 31, 169, 405, 421

characteristics of, 169
plasma parameters in, 10

solitons, 403, 408, 414, 418
sound waves

propagation of, 70
space charge, 300
space plasmas, 67, 141, 503, 504
space potential, 457
spectral density of radiation flux, see radiation, flux,

spectral density of
spectral energy density of electrostatic field, 380
stability

radial, 5, 98, 99
toroidal, 5, 98

state variables, 55
static equilibrium

configurations, 82
cylindrical, 85
toroidal, 89

equations, 82
stimulated Brillouin scattering, 397
stimulated Raman scattering, 397, 441

back-scatter, 445
equations

numerical solution of, 447
forward-scatter, 445
growth rate, 442
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stimulated Raman scattering (cont.)
in homogeneous plasmas, 441

maximum growth rate, 442
in inhomogeneous plasmas, 442

absolute growth rate, 445
convective growth, 445
non-local behaviour, 446

wave damping coefficients, 442
Stokes equation, 430
Stokes phenomenon, 431
stop-band, 210
stress tensor, 52

equilibrium, 67
isotropic, 53
Maxwell, 78
non-isotropic, 54
total, 82
viscous, 54

Sun
chromosphere, see chromosphere
convection zone, 6
corona, see solar corona
magnetic field of, see magnetic field, solar
photosphere, see photosphere
radiation zone, 6

sunspots, 105, 108, 134
characteristics of, 141
diffusion time, 141

supra-thermal particles, 410
surface charge, 74
surface current, 74
surface wave, 462
Suydam criterion, 130, 136
Sweet–Parker model, 146

reconnection rate, 193
synchrotron radiation

by ultra-relativistic electrons, 351
emission intensity, 353
emission spectrum, 352
emission spectrum from Crab nebula, 354
lighthouse effect, 351
spectral index, 353
spectral width, 352

from hot plasmas, 348
emission coefficient, 349
harmonic structure, 350
relativistic broadening, 351

Taylor hypothesis, 143
temperature equilibration, 62
test particle, 287, 288, 313

model, 313, 315
thermal conductivity, 299, 494

coefficient of, 66, 297
electron, 498, 500
ion, 498, 500

thermal velocity, 481
thermodynamic equilibrium

local, 334
thermodynamic fluxes, 492

thermodynamic forces, 492
thermodynamics

first law of, 55
second law of, 184, 186, 501

thermoelectric coefficients, 494, 498
thermoelectric effect, 497
thermonuclear fusion, 2, 6

controlled, 2, 3
thermonuclear power, 3
theta-pinch, 85, 93
Thomson cross-section, 328
Thomson scattering

coherent, 361
dressed test particle approach, 361
effect of Coulomb collisions, 369
effect of impurity ions, 366
effect of magnetic field, 360
experimental verification, 365
form factor, 362
plasma diagnostic, 365
scattering parameter, 364
spectral power density, 362

electron temperature diagnostic, 358
incoherent, 355

form factor, 358
scattered power, 357

relativistic non-linear, 374
time scales

convective, 140
gravitational, 155
hydrodynamic, 62, 488
resistive diffusion, 140
temperature equilibration, 317

tokamak, 4, 99, 119
banana orbit, see banana orbit
characteristics of, 141
disruptions, 142
equilibria, 100, 101
fields, 5
instabilities, 157
Mirnov oscillations, see Mirnov oscillations
particle orbits in, 33
passing particles, see passing particles
plasma parameters in, 10
sawtooth oscillations, see sawtooth oscillations
trapped particles, see trapped particles

Tonks–Dattner resonances, 462
toroidal force balance, 89, 92, 101
transit time, 29

Alfvén, 140
proton, 31

transport coefficients, 55, 297, 492–500, 503
anomalous, 318
turbulent, 420

transport equations, 190, 420, 492
transport matrix, 492
transport theory, 296

classical, 487
transverse waves, 210
trapped particles, 33–35, 305
Trubnikov function, 350
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turbulent dissipation, 407
type III solar radio noise, 450

upper hybrid frequency, 280

Van Allen radiation belts, 30–31
virial theorem, 84, 103
viscosity

bulk, 54
coefficient of, 66, 300
electron, 498, 500
ion, 498, 500
kinematic, 61
shear

coefficient of, 54
stress, 54
tensor, 495

Vlasov equation, 254, 289, 296, 377, 409
electron, 256
equivalence to particle orbit theory, 254
numerical solution of, 293

warm plasma
general dispersion relation, 230
theory, 227
wave equations, 72, 73, 398
waves, 227

wave dispersion, 200, 406
normal, 201

wave normal surface, 198, 218
destructive transition, 222
intact transition, 222
re-shaping transition, 221

wave packet, 200
wave-front, 406
wavenumber mismatch, 394, 397
weak coupling approximation, 256, 471, 475, 479,

498
whistler wave, 215
winding numbers, 95
WKBJ approximation, 426

electric field swelling, 428
equations for stimulated Raman scattering, 444
solutions to Stokes equation, 430

dominant term, 431
subdominant term, 431

validity of solutions, 427
Woltjer theorem, 143

Z-pinch, 4, 86, 90, 108, 115, 133
Zakharov equations, 397–402

first, 400
second, 401
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